示例#1
0
    def default_config(cls) -> PGConfig:
        config = PGDriveEnv.default_config()

        # Set the internal environment run in 0.02s interval.
        config["decision_repeat"] = 1

        # Speed reward_function is given for current state, so its magnitude need to be reduced
        original_action_repeat = PGDriveEnv.default_config()["decision_repeat"]
        config[
            "speed_reward"] = config["speed_reward"] / original_action_repeat

        # Set the interval from 0.02s to 1s
        config.update(
            {
                "fixed_action_repeat": 0,
                "max_action_repeat": 50,
                "min_action_repeat": 1,
                "horizon": 5000,
            }, )
        # default gamma for ORIGINAL primitive step!
        # Note that we will change this term since ORIGINAL primitive steps is not the internal step!
        # It still contains ORIGINAL_ACTION_STEP internal steps!
        # So we will modify this gamma to make sure it behaves like the one applied to ORIGINAL primitive steps.
        # config.add("gamma", 0.99)
        return config
示例#2
0
 def default_config() -> PGConfig:
     config = PGDriveEnv.default_config()
     config.add("change_friction", True)
     config.add("friction_min", 0.8)
     config.add("friction_max", 1.2)
     config.update({"vehicle_config": {"wheel_friction": 1.0}})
     return config
示例#3
0
 def default_config() -> PGConfig:
     config = PGDriveEnv.default_config()
     config.update({
         "change_density": True,
         "density_min": 0.0,
         "density_max": 0.4,
     })
     return config
示例#4
0
 def default_config() -> PGConfig:
     config = PGDriveEnv.default_config()
     config.update({
         "change_friction": True,
         "friction_min": 0.8,
         "friction_max": 1.2,
         "vehicle_config": {
             "wheel_friction": 1.0
         }
     })
     return config
示例#5
0
 def default_config(cls) -> PGConfig:
     config = PGDriveEnv.default_config()
     config["vehicle_config"]["lidar"].update({"num_lasers": 0, "distance": 0})  # Remove lidar
     config.update(
         {
             "frame_skip": 5,
             "frame_stack": 3,
             "post_stack": 5,
             "rgb_clip": True,
             "resolution_size": 84,
             "distance": 30
         }
     )
     return config
示例#6
0
    def default_config(cls) -> PGConfig:
        config = PGDriveEnv.default_config()

        # Set the internal environment run in 0.02s interval.
        config["decision_repeat"] = 1

        # Speed reward is given for current state, so its magnitude need to be reduced
        config["speed_reward"] = config["speed_reward"] / cls.ORIGINAL_ACTION_REPEAT

        # Set the interval from 0.02s to 1s
        config.add("fixed_action_repeat", 0)  # 0 stands for using varying action repeat.
        config.add("max_action_repeat", 50)
        config.add("min_action_repeat", 1)
        config.add("horizon", 5000)  # How many primitive steps within one episode

        # default gamma for ORIGINAL primitive step!
        # Note that we will change this term since ORIGINAL primitive steps is not the internal step!
        # It still contains ORIGINAL_ACTION_STEP internal steps!
        # So we will modify this gamma to make sure it behaves like the one applied to ORIGINAL primitive steps.
        # config.add("gamma", 0.99)

        return config
示例#7
0
    @staticmethod
    def argoverse_position(pos):
        pos[1] *= -1
        return pos

    @staticmethod
    def pgdrive_position(pos):
        pos[1] *= -1
        return pos


if __name__ == "__main__":
    from pgdrive.engine.engine_utils import initialize_engine
    from pgdrive.envs.pgdrive_env import PGDriveEnv

    default_config = PGDriveEnv.default_config()
    default_config["use_render"] = True
    default_config["debug"] = True
    engine = initialize_engine(default_config)

    # in argoverse coordinates
    xcenter, ycenter = 2599.5505965123866, 1200.0214763629717
    xmin = xcenter - 80  # 150
    xmax = xcenter + 80  # 150
    ymin = ycenter - 80  # 150
    ymax = ycenter + 80  # 150
    map = ArgoverseMap({
        "city":
        "PIT",
        # "draw_map_resolution": 1024,
        "center":
 def default_config() -> Config:
     config = PGDriveEnv.default_config()
     config.update(MULTI_AGENT_PGDRIVE_DEFAULT_CONFIG)
     return config
示例#9
0
 def default_config() -> PGConfig:
     config = PGDriveEnv.default_config()
     config.add("change_density", True)
     config.add("density_min", 0.0)
     config.add("density_max", 0.4)
     return config
示例#10
0
    def default_config() -> PGConfig:
        config = PGDriveEnvV1.default_config()
        config.update(
            dict(
                # ===== Traffic =====
                traffic_density=0.1,
                traffic_mode=TrafficMode.
                Hybrid,  # "Respawn", "Trigger", "Hybrid"
                random_traffic=True,  # Traffic is randomized at default.

                # ===== Cost Scheme =====
                crash_vehicle_cost=1.,
                crash_object_cost=1.,
                out_of_road_cost=1.,

                # ===== Reward Scheme =====
                # See: https://github.com/decisionforce/pgdrive/issues/283
                success_reward=10.0,
                out_of_road_penalty=5.0,
                crash_vehicle_penalty=5.0,
                crash_object_penalty=5.0,
                acceleration_penalty=0.0,
                driving_reward=1.0,
                general_penalty=0.0,
                speed_reward=0.5,
                use_lateral=False,
                gaussian_noise=0.0,
                dropout_prob=0.0,
                vehicle_config=dict(
                    wheel_friction=0.8,

                    # See: https://github.com/decisionforce/pgdrive/issues/297
                    lidar=dict(num_lasers=240,
                               distance=50,
                               num_others=4,
                               gaussian_noise=0.0,
                               dropout_prob=0.0),
                    side_detector=dict(num_lasers=0,
                                       distance=50,
                                       gaussian_noise=0.0,
                                       dropout_prob=0.0),
                    lane_line_detector=dict(num_lasers=0,
                                            distance=50,
                                            gaussian_noise=0.0,
                                            dropout_prob=0.0),

                    # Following the examples: https://docs.panda3d.org/1.10/python/programming/physics/bullet/vehicles
                    max_engine_force=1000,
                    max_brake_force=100,
                    max_steering=40,
                    max_speed=80,
                ),
                map_config=dict(block_type_version="v2"),

                # Disable map loading!
                auto_termination=False,
                load_map_from_json=False,
                _load_map_from_json="",
            ))
        config.remove_keys([])
        return config