class TestMarkovModelCreation(unittest.TestCase): def setUp(self): self.graph = MarkovModel() def test_class_init_without_data(self): self.assertIsInstance(self.graph, MarkovModel) def test_class_init_with_data_string(self): self.g = MarkovModel([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.g.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.g.edges()), [['a', 'b'], ['b', 'c']]) def test_class_init_with_data_nonstring(self): self.g = MarkovModel([(1, 2), (2, 3)]) def test_add_node_string(self): self.graph.add_node('a') self.assertListEqual(self.graph.nodes(), ['a']) def test_add_node_nonstring(self): self.graph.add_node(1) def test_add_nodes_from_string(self): self.graph.add_nodes_from(['a', 'b', 'c', 'd']) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd']) def test_add_nodes_from_non_string(self): self.graph.add_nodes_from([1, 2, 3, 4]) def test_add_edge_string(self): self.graph.add_edge('d', 'e') self.assertListEqual(sorted(self.graph.nodes()), ['d', 'e']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['d', 'e']]) self.graph.add_nodes_from(['a', 'b', 'c']) self.graph.add_edge('a', 'b') self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['d', 'e']]) def test_add_edge_nonstring(self): self.graph.add_edge(1, 2) def test_add_edge_selfloop(self): self.assertRaises(ValueError, self.graph.add_edge, 'a', 'a') def test_add_edges_from_string(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c']) self.assertListEqual(hf.recursive_sorted(self.graph.edges()), [['a', 'b'], ['b', 'c']]) self.graph.add_nodes_from(['d', 'e', 'f']) self.graph.add_edges_from([('d', 'e'), ('e', 'f')]) self.assertListEqual(sorted(self.graph.nodes()), ['a', 'b', 'c', 'd', 'e', 'f']) self.assertListEqual( hf.recursive_sorted(self.graph.edges()), hf.recursive_sorted([('a', 'b'), ('b', 'c'), ('d', 'e'), ('e', 'f')])) def test_add_edges_from_nonstring(self): self.graph.add_edges_from([(1, 2), (2, 3)]) def test_add_edges_from_self_loop(self): self.assertRaises(ValueError, self.graph.add_edges_from, [('a', 'a')]) def test_number_of_neighbors(self): self.graph.add_edges_from([('a', 'b'), ('b', 'c')]) self.assertEqual(len(self.graph.neighbors('b')), 2) def tearDown(self): del self.graph
class TestGibbsSampling(unittest.TestCase): def setUp(self): # A test Bayesian model diff_cpd = TabularCPD('diff', 2, [[0.6], [0.4]]) intel_cpd = TabularCPD('intel', 2, [[0.7], [0.3]]) grade_cpd = TabularCPD('grade', 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.02, 0.2]], evidence=['diff', 'intel'], evidence_card=[2, 2]) self.bayesian_model = BayesianModel() self.bayesian_model.add_nodes_from(['diff', 'intel', 'grade']) self.bayesian_model.add_edges_from([('diff', 'grade'), ('intel', 'grade')]) self.bayesian_model.add_cpds(diff_cpd, intel_cpd, grade_cpd) # A test Markov model self.markov_model = MarkovModel([('A', 'B'), ('C', 'B'), ('B', 'D')]) factor_ab = DiscreteFactor(['A', 'B'], [2, 3], [1, 2, 3, 4, 5, 6]) factor_cb = DiscreteFactor(['C', 'B'], [4, 3], [3, 1, 4, 5, 7, 8, 1, 3, 10, 4, 5, 6]) factor_bd = DiscreteFactor(['B', 'D'], [3, 2], [5, 7, 2, 1, 9, 3]) self.markov_model.add_factors(factor_ab, factor_cb, factor_bd) self.gibbs = GibbsSampling(self.bayesian_model) def tearDown(self): del self.bayesian_model del self.markov_model @patch('pgm.sampling.GibbsSampling._get_kernel_from_bayesian_model', autospec=True) @patch('pgm.models.MarkovChain.__init__', autospec=True) def test_init_bayesian_model(self, init, get_kernel): model = MagicMock(spec_set=BayesianModel) gibbs = GibbsSampling(model) init.assert_called_once_with(gibbs) get_kernel.assert_called_once_with(gibbs, model) @patch('pgm.sampling.GibbsSampling._get_kernel_from_markov_model', autospec=True) def test_init_markov_model(self, get_kernel): model = MagicMock(spec_set=MarkovModel) gibbs = GibbsSampling(model) get_kernel.assert_called_once_with(gibbs, model) def test_get_kernel_from_bayesian_model(self): gibbs = GibbsSampling() gibbs._get_kernel_from_bayesian_model(self.bayesian_model) self.assertListEqual(list(gibbs.variables), self.bayesian_model.nodes()) self.assertDictEqual(gibbs.cardinalities, { 'diff': 2, 'intel': 2, 'grade': 3 }) def test_get_kernel_from_markov_model(self): gibbs = GibbsSampling() gibbs._get_kernel_from_markov_model(self.markov_model) self.assertListEqual(list(gibbs.variables), self.markov_model.nodes()) self.assertDictEqual(gibbs.cardinalities, { 'A': 2, 'B': 3, 'C': 4, 'D': 2 }) def test_sample(self): start_state = [State('diff', 0), State('intel', 0), State('grade', 0)] sample = self.gibbs.sample(start_state, 2) self.assertEquals(len(sample), 2) self.assertEquals(len(sample.columns), 3) self.assertIn('diff', sample.columns) self.assertIn('intel', sample.columns) self.assertIn('grade', sample.columns) self.assertTrue(set(sample['diff']).issubset({0, 1})) self.assertTrue(set(sample['intel']).issubset({0, 1})) self.assertTrue(set(sample['grade']).issubset({0, 1, 2})) @patch("pgm.sampling.GibbsSampling.random_state", autospec=True) def test_sample_less_arg(self, random_state): self.gibbs.state = None random_state.return_value = [ State('diff', 0), State('intel', 0), State('grade', 0) ] sample = self.gibbs.sample(size=2) random_state.assert_called_once_with(self.gibbs) self.assertEqual(len(sample), 2) def test_generate_sample(self): start_state = [State('diff', 0), State('intel', 0), State('grade', 0)] gen = self.gibbs.generate_sample(start_state, 2) samples = [sample for sample in gen] self.assertEqual(len(samples), 2) self.assertEqual( {samples[0][0].var, samples[0][1].var, samples[0][2].var}, {'diff', 'intel', 'grade'}) self.assertEqual( {samples[1][0].var, samples[1][1].var, samples[1][2].var}, {'diff', 'intel', 'grade'}) @patch("pgm.sampling.GibbsSampling.random_state", autospec=True) def test_generate_sample_less_arg(self, random_state): self.gibbs.state = None gen = self.gibbs.generate_sample(size=2) samples = [sample for sample in gen] random_state.assert_called_once_with(self.gibbs) self.assertEqual(len(samples), 2)