class TestDynamicBayesianNetworkMethods(unittest.TestCase): def setUp(self): self.network = DynamicBayesianNetwork() self.grade_cpd = TabularCPD( ('G', 0), 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.2, 0.2]], [('D', 0), ('I', 0)], [2, 2]) self.d_i_cpd = TabularCPD(('D', 1), 2, [[0.6, 0.3], [0.4, 0.7]], [('D', 0)], 2) self.diff_cpd = TabularCPD(('D', 0), 2, [[0.6, 0.4]]) self.intel_cpd = TabularCPD(('I', 0), 2, [[0.7, 0.3]]) self.i_i_cpd = TabularCPD(('I', 1), 2, [[0.5, 0.4], [0.5, 0.6]], [('I', 0)], 2) self.grade_1_cpd = TabularCPD( ('G', 1), 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.08, 0.3], [0.3, 0.7, 0.2, 0.2]], [('D', 1), ('I', 1)], [2, 2]) def test_get_intra_and_inter_edges(self): self.network.add_edges_from([(('a', 0), ('b', 0)), (('a', 0), ('a', 1)), (('b', 0), ('b', 1))]) self.assertListEqual(sorted(self.network.get_intra_edges()), [(('a', 0), ('b', 0))]) self.assertListEqual(sorted(self.network.get_intra_edges(1)), [(('a', 1), ('b', 1))]) self.assertRaises(ValueError, self.network.get_intra_edges, -1) self.assertRaises(ValueError, self.network.get_intra_edges, '-') self.assertListEqual(sorted(self.network.get_inter_edges()), [(('a', 0), ('a', 1)), (('b', 0), ('b', 1))]) def test_get_interface_nodes(self): self.network.add_edges_from([ (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1)) ]) self.assertListEqual(sorted(self.network.get_interface_nodes()), [('D', 0), ('I', 0)]) self.assertRaises(ValueError, self.network.get_interface_nodes, -1) self.assertRaises(ValueError, self.network.get_interface_nodes, '-') def test_get_slice_nodes(self): self.network.add_edges_from([ (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1)) ]) self.assertListEqual(sorted(self.network.get_slice_nodes()), [('D', 0), ('G', 0), ('I', 0)]) self.assertListEqual(sorted(self.network.get_slice_nodes(1)), [('D', 1), ('G', 1), ('I', 1)]) self.assertRaises(ValueError, self.network.get_slice_nodes, -1) self.assertRaises(ValueError, self.network.get_slice_nodes, '-') def test_add_single_cpds(self): self.network.add_edges_from([(('D', 0), ('G', 0)), (('I', 0), ('G', 0))]) self.network.add_cpds(self.grade_cpd) self.assertListEqual(self.network.get_cpds(), [self.grade_cpd]) def test_get_cpds(self): self.network.add_edges_from([ (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1)) ]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.network.initialize_initial_state() self.assertEqual(set(self.network.get_cpds()), set([self.diff_cpd, self.intel_cpd, self.grade_cpd])) self.assertEqual( self.network.get_cpds(time_slice=1)[0].variable, ('G', 1)) def test_add_multiple_cpds(self): self.network.add_edges_from([ (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1)) ]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.assertEqual(self.network.get_cpds(('G', 0)).variable, ('G', 0)) self.assertEqual(self.network.get_cpds(('D', 1)).variable, ('D', 1)) self.assertEqual(self.network.get_cpds(('D', 0)).variable, ('D', 0)) self.assertEqual(self.network.get_cpds(('I', 0)).variable, ('I', 0)) self.assertEqual(self.network.get_cpds(('I', 1)).variable, ('I', 1)) def test_initialize_initial_state(self): self.network.add_nodes_from(['D', 'G', 'I', 'S', 'L']) self.network.add_edges_from([ (('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1)) ]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.network.initialize_initial_state() self.assertEqual(len(self.network.cpds), 6) self.assertEqual(self.network.get_cpds(('G', 1)).variable, ('G', 1)) def test_moralize(self): self.network.add_edges_from(([(('D', 0), ('G', 0)), (('I', 0), ('G', 0))])) moral_graph = self.network.moralize() self.assertListEqual(hf.recursive_sorted(moral_graph.edges()), [[('D', 0), ('G', 0)], [('D', 0), ('I', 0)], [('D', 1), ('G', 1)], [('D', 1), ('I', 1)], [('G', 0), ('I', 0)], [('G', 1), ('I', 1)]]) def tearDown(self): del self.network
(('D', 0), ('D', 1)), (('I', 0), ('I', 1))]) grade_cpd = TabularCPD( ('G', 0), 3, [[0.3, 0.05, 0.9, 0.5], [0.4, 0.25, 0.8, 0.03], [0.3, 0.7, 0.02, 0.2]], evidence=[('I', 0), ('D', 0)], evidence_card=[2, 2]) print 'grade_cpd', grade_cpd d_i_cpd = TabularCPD(('D', 1), 2, [[0.6, 0.3], [0.4, 0.7]], evidence=[('D', 0)], evidence_card=[2]) diff_cpd = TabularCPD(('D', 0), 2, [[0.6, 0.4]]) intel_cpd = TabularCPD(('I', 0), 2, [[0.7, 0.3]]) i_i_cpd = TabularCPD(('I', 1), 2, [[0.5, 0.4], [0.5, 0.6]], evidence=[('I', 0)], evidence_card=[2]) dbn.add_edges_from([(('T', 0), ('T', 1)), (('P', 0), ('T', 1)), (('P', 1), ('T', 1)), (('T', 0), ('I', 1)), (('T', 1), ('I', 1)), (('E', 1), ('I', 1))]) trust_cpd = LinearGaussianCPD('T', [0.2, -2, 3, 7], 9.6, ['T', 'P', 'X3']) # interaction_cpd = # extranous_interaction_cpd = dbn.add_cpds(grade_cpd, d_i_cpd, diff_cpd, intel_cpd, i_i_cpd) dbn.get_cpds() t = dbn.get_interface_nodes(time_slice=0) leaves = dbn.get_roots() print t, leaves
class TestDynamicBayesianNetworkMethods(unittest.TestCase): def setUp(self): self.network = DynamicBayesianNetwork() self.grade_cpd = TabularCPD(('G', 0), 3, [[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3], [0.3, 0.7, 0.1, 0.2]], [('D', 0), ('I', 0)], [2, 2]) self.d_i_cpd = TabularCPD(('D', 1), 2, [[0.6, 0.3], [0.4, 0.7]], [('D', 0)], 2) self.diff_cpd = TabularCPD(('D', 0), 2, [[0.6, 0.4]]) self.intel_cpd = TabularCPD(('I', 0), 2, [[0.7, 0.3]]) self.i_i_cpd = TabularCPD(('I', 1), 2, [[0.5, 0.4], [0.5, 0.6]], [('I', 0)], 2) self.grade_1_cpd = TabularCPD(('G', 1), 3, [[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3], [0.3, 0.7, 0.1, 0.2]], [('D', 1), ('I', 1)], [2, 2]) def test_get_intra_and_inter_edges(self): self.network.add_edges_from([(('a', 0), ('b', 0)), (('a', 0), ('a', 1)), (('b', 0), ('b', 1))]) self.assertListEqual(sorted(self.network.get_intra_edges()), [(('a', 0), ('b', 0))]) self.assertListEqual(sorted(self.network.get_intra_edges(1)), [(('a', 1), ('b', 1))]) self.assertRaises(ValueError, self.network.get_intra_edges, -1) self.assertRaises(ValueError, self.network.get_intra_edges, '-') self.assertListEqual(sorted(self.network.get_inter_edges()), [(('a', 0), ('a', 1)), (('b', 0), ('b', 1))]) def test_get_interface_nodes(self): self.network.add_edges_from( [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))]) self.assertListEqual(sorted(self.network.get_interface_nodes()), [('D', 0), ('I',0)]) self.assertRaises(ValueError, self.network.get_interface_nodes, -1) self.assertRaises(ValueError, self.network.get_interface_nodes, '-') def test_get_slice_nodes(self): self.network.add_edges_from( [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))]) self.assertListEqual(sorted(self.network.get_slice_nodes()), [('D', 0), ('G', 0), ('I', 0)]) self.assertListEqual(sorted(self.network.get_slice_nodes(1)), [('D', 1), ('G', 1), ('I', 1)]) self.assertRaises(ValueError, self.network.get_slice_nodes, -1) self.assertRaises(ValueError, self.network.get_slice_nodes, '-') def test_add_single_cpds(self): self.network.add_edges_from([(('D', 0), ('G', 0)), (('I', 0), ('G', 0))]) self.network.add_cpds(self.grade_cpd) self.assertListEqual(self.network.get_cpds(), [self.grade_cpd]) def test_get_cpds(self): self.network.add_edges_from( [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.network.initialize_initial_state() self.assertEqual(set(self.network.get_cpds()), set([self.diff_cpd, self.intel_cpd, self.grade_cpd])) self.assertEqual(self.network.get_cpds(time_slice=1)[0].variable, ('G', 1)) def test_add_multiple_cpds(self): self.network.add_edges_from( [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.assertEqual(self.network.get_cpds(('G', 0)).variable, ('G', 0)) self.assertEqual(self.network.get_cpds(('D', 1)).variable, ('D', 1)) self.assertEqual(self.network.get_cpds(('D', 0)).variable, ('D', 0)) self.assertEqual(self.network.get_cpds(('I', 0)).variable, ('I', 0)) self.assertEqual(self.network.get_cpds(('I', 1)).variable, ('I', 1)) def test_initialize_initial_state(self): self.network.add_nodes_from(['D', 'G', 'I', 'S', 'L']) self.network.add_edges_from( [(('D', 0), ('G', 0)), (('I', 0), ('G', 0)), (('D', 0), ('D', 1)), (('I', 0), ('I', 1))]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.network.initialize_initial_state() self.assertEqual(len(self.network.cpds), 6) self.assertEqual(self.network.get_cpds(('G', 1)).variable, ('G', 1)) def test_moralize(self): self.network.add_edges_from(([(('D',0), ('G',0)), (('I',0), ('G',0))])) moral_graph = self.network.moralize() self.assertListEqual(hf.recursive_sorted(moral_graph.edges()), [[('D', 0), ('G', 0)], [('D', 0), ('I', 0)], [('D', 1), ('G', 1)], [('D', 1), ('I', 1)], [('G', 0), ('I', 0)], [('G', 1), ('I', 1)]]) def tearDown(self): del self.network
class TestDynamicBayesianNetworkMethods(unittest.TestCase): def setUp(self): self.network = DynamicBayesianNetwork() self.grade_cpd = TabularCPD( ("G", 0), 3, values=[[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3], [0.3, 0.7, 0.1, 0.2]], evidence=[("D", 0), ("I", 0)], evidence_card=[2, 2], ) self.d_i_cpd = TabularCPD( ("D", 1), 2, values=[[0.6, 0.3], [0.4, 0.7]], evidence=[("D", 0)], evidence_card=[2], ) self.diff_cpd = TabularCPD(("D", 0), 2, values=[[0.6, 0.4]]) self.intel_cpd = TabularCPD(("I", 0), 2, values=[[0.7, 0.3]]) self.i_i_cpd = TabularCPD( ("I", 1), 2, values=[[0.5, 0.4], [0.5, 0.6]], evidence=[("I", 0)], evidence_card=[2], ) self.grade_1_cpd = TabularCPD( ("G", 1), 3, values=[[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3], [0.3, 0.7, 0.1, 0.2]], evidence=[("D", 1), ("I", 1)], evidence_card=[2, 2], ) def test_get_intra_and_inter_edges(self): self.network.add_edges_from([(("a", 0), ("b", 0)), (("a", 0), ("a", 1)), (("b", 0), ("b", 1))]) self.assertListEqual(sorted(self.network.get_intra_edges()), [(("a", 0), ("b", 0))]) self.assertListEqual(sorted(self.network.get_intra_edges(1)), [(("a", 1), ("b", 1))]) self.assertRaises(ValueError, self.network.get_intra_edges, -1) self.assertRaises(ValueError, self.network.get_intra_edges, "-") self.assertListEqual( sorted(self.network.get_inter_edges()), [(("a", 0), ("a", 1)), (("b", 0), ("b", 1))], ) def test_get_interface_nodes(self): self.network.add_edges_from([ (("D", 0), ("G", 0)), (("I", 0), ("G", 0)), (("D", 0), ("D", 1)), (("I", 0), ("I", 1)), ]) self.assertListEqual(sorted(self.network.get_interface_nodes()), [("D", 0), ("I", 0)]) self.assertRaises(ValueError, self.network.get_interface_nodes, -1) self.assertRaises(ValueError, self.network.get_interface_nodes, "-") def test_get_slice_nodes(self): self.network.add_edges_from([ (("D", 0), ("G", 0)), (("I", 0), ("G", 0)), (("D", 0), ("D", 1)), (("I", 0), ("I", 1)), ]) self.assertListEqual(sorted(self.network.get_slice_nodes()), [("D", 0), ("G", 0), ("I", 0)]) self.assertListEqual(sorted(self.network.get_slice_nodes(1)), [("D", 1), ("G", 1), ("I", 1)]) self.assertRaises(ValueError, self.network.get_slice_nodes, -1) self.assertRaises(ValueError, self.network.get_slice_nodes, "-") def test_add_single_cpds(self): self.network.add_edges_from([(("D", 0), ("G", 0)), (("I", 0), ("G", 0))]) self.network.add_cpds(self.grade_cpd) self.assertListEqual(self.network.get_cpds(), [self.grade_cpd]) def test_get_cpds(self): self.network.add_edges_from([ (("D", 0), ("G", 0)), (("I", 0), ("G", 0)), (("D", 0), ("D", 1)), (("I", 0), ("I", 1)), ]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.network.initialize_initial_state() self.assertEqual( set(self.network.get_cpds()), set([self.diff_cpd, self.intel_cpd, self.grade_cpd]), ) self.assertEqual( {cpd.variable for cpd in self.network.get_cpds(time_slice=1)}, {("D", 1), ("I", 1), ("G", 1)}, ) def test_add_multiple_cpds(self): self.network.add_edges_from([ (("D", 0), ("G", 0)), (("I", 0), ("G", 0)), (("D", 0), ("D", 1)), (("I", 0), ("I", 1)), ]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.assertEqual(self.network.get_cpds(("G", 0)).variable, ("G", 0)) self.assertEqual(self.network.get_cpds(("D", 1)).variable, ("D", 1)) self.assertEqual(self.network.get_cpds(("D", 0)).variable, ("D", 0)) self.assertEqual(self.network.get_cpds(("I", 0)).variable, ("I", 0)) self.assertEqual(self.network.get_cpds(("I", 1)).variable, ("I", 1)) def test_initialize_initial_state(self): self.network.add_nodes_from(["D", "G", "I", "S", "L"]) self.network.add_edges_from([ (("D", 0), ("G", 0)), (("I", 0), ("G", 0)), (("D", 0), ("D", 1)), (("I", 0), ("I", 1)), ]) self.network.add_cpds(self.grade_cpd, self.d_i_cpd, self.diff_cpd, self.intel_cpd, self.i_i_cpd) self.network.initialize_initial_state() self.assertEqual(len(self.network.cpds), 6) self.assertEqual(self.network.get_cpds(("G", 1)).variable, ("G", 1)) def test_moralize(self): self.network.add_edges_from(([(("D", 0), ("G", 0)), (("I", 0), ("G", 0))])) moral_graph = self.network.moralize() self.assertListEqual( hf.recursive_sorted(moral_graph.edges()), [ [("D", 0), ("G", 0)], [("D", 0), ("I", 0)], [("D", 1), ("G", 1)], [("D", 1), ("I", 1)], [("G", 0), ("I", 0)], [("G", 1), ("I", 1)], ], ) def test_copy(self): self.network.add_edges_from([ (("D", 0), ("G", 0)), (("I", 0), ("G", 0)), (("D", 0), ("D", 1)), (("I", 0), ("I", 1)), ]) cpd = TabularCPD( ("G", 0), 3, values=[[0.3, 0.05, 0.8, 0.5], [0.4, 0.25, 0.1, 0.3], [0.3, 0.7, 0.1, 0.2]], evidence=[("D", 0), ("I", 0)], evidence_card=[2, 2], ) self.network.add_cpds(cpd) copy = self.network.copy() self.assertIsInstance(copy, DynamicBayesianNetwork) self.assertListEqual(sorted(self.network._nodes()), sorted(copy._nodes())) self.assertListEqual(sorted(self.network.edges()), sorted(copy.edges())) self.assertListEqual(self.network.get_cpds(), copy.get_cpds()) self.assertListEqual(sorted(self.network.get_intra_edges()), sorted(copy.get_intra_edges())) self.assertListEqual(sorted(self.network.get_inter_edges()), sorted(copy.get_inter_edges())) self.assertListEqual(sorted(self.network.get_slice_nodes()), sorted(copy.get_slice_nodes())) copy.cpds[0].values = np.array([[0.4, 0.05, 0.3, 0.5], [0.3, 0.25, 0.5, 0.3], [0.3, 0.7, 0.2, 0.2]]) self.assertNotEqual(self.network.get_cpds(), copy.get_cpds()) self.network.add_cpds(self.i_i_cpd, self.d_i_cpd) copy.add_cpds(self.diff_cpd, self.intel_cpd) self.network.add_node("A") copy.add_node("Z") self.network.add_edge(("A", 0), ("D", 0)) copy.add_edge(("Z", 0), ("D", 0)) self.assertNotEqual(sorted(self.network._nodes()), sorted(copy._nodes())) self.assertNotEqual(sorted(self.network.edges()), sorted(copy.edges())) self.assertNotEqual(self.network.get_cpds(), copy.get_cpds()) self.assertNotEqual(sorted(self.network.get_intra_edges()), sorted(copy.get_intra_edges())) self.assertListEqual(sorted(self.network.get_inter_edges()), sorted(copy.get_inter_edges())) self.assertNotEqual(sorted(self.network.get_slice_nodes()), sorted(copy.get_slice_nodes())) self.network.add_edge(("A", 0), ("D", 1)) copy.add_edge(("Z", 0), ("D", 1)) self.assertNotEqual(sorted(self.network.get_inter_edges()), sorted(copy.get_inter_edges())) def tearDown(self): del self.network