示例#1
0
    def __init__(self, K, n, C=None, sigma_C=1, mu=None, mu_pi=None):
        """
        Create a PGMultinomial distribution with mean and covariance for psi.

        :param K:       Dimensionality of the multinomial distribution
        :param mu_C:    Mean of the matrix normal distribution over C
        """
        assert isinstance(K, int) and K >= 2, "K must be an integer >= 2"
        self.K = K

        assert isinstance(n, int) and n >= 1, "n must be an integer >= 1"
        self.n = n

        # Initialize emission matrix C
        self.sigma_C = sigma_C
        if C is None:
            self.C = self.sigma_C * np.random.randn(self.K-1, self.n)
            # mu, sigma = compute_psi_cmoments(np.ones(K))
            # self.C = compute_psi_cmoments(np.ones(K))[0][:,None] * np.ones((self.K-1, self.n))
        else:
            assert C.shape == (self.K-1, self.n)
            self.C = C

        # Initialize the observation mean (mu)
        if mu is None and mu_pi is None:
            self.mu = np.zeros(self.K-1)
        elif mu is not None:
            assert mu.shape == (self.K-1,)
            self.mu = mu
        else:
            assert mu_pi.shape == (self.K,)
            self.mu = pi_to_psi(mu_pi)

        # Initialize Polya-gamma augmentation variables
        self.ppgs = initialize_polya_gamma_samplers()
示例#2
0
文件: lda.py 项目: fivejjs/pgmult
    def __init__(self, data, T, alpha_beta):
        mu, sigma = np.zeros(T), np.eye(T)
        self.theta_prior = Gaussian(mu=mu, sigma=sigma, mu_0=mu, sigma_0=T * sigma / 10.0, nu_0=T / 10.0, kappa_0=10.0)

        self.ppgs = initialize_polya_gamma_samplers()
        self.omega = np.zeros((data.shape[0], T))

        super(LogisticNormalCorrelatedLDA, self).__init__(data, T, alpha_beta)
示例#3
0
文件: lda.py 项目: fivejjs/pgmult
    def __init__(self, data, T, alpha_beta):
        mu, sigma = compute_uniform_mean_psi(T)
        self.theta_prior = Gaussian(
            mu=mu, sigma=sigma, mu_0=mu, sigma_0=T * sigma / 10.0, nu_0=T / 10.0, kappa_0=1.0 / 10
        )

        self.ppgs = initialize_polya_gamma_samplers()
        self.omega = np.zeros((data.shape[0], T - 1))

        super(StickbreakingCorrelatedLDA, self).__init__(data, T, alpha_beta)
示例#4
0
    def __init__(self, data, T, alpha_beta):
        mu, sigma = np.zeros(T), np.eye(T)
        self.theta_prior = \
            Gaussian(
                mu=mu, sigma=sigma, mu_0=mu, sigma_0=T*sigma/10.,
                nu_0=T/10., kappa_0=10.)

        self.ppgs = initialize_polya_gamma_samplers()
        self.omega = np.zeros((data.shape[0], T))

        super(LogisticNormalCorrelatedLDA, self).__init__(data, T, alpha_beta)
示例#5
0
    def __init__(self, data, T, alpha_beta):
        mu, sigma = compute_uniform_mean_psi(T)
        self.theta_prior = Gaussian(mu=mu,
                                    sigma=sigma,
                                    mu_0=mu,
                                    sigma_0=T * sigma / 10.,
                                    nu_0=T / 10.,
                                    kappa_0=1. / 10)

        self.ppgs = initialize_polya_gamma_samplers()
        self.omega = np.zeros((data.shape[0], T - 1))

        super(StickbreakingCorrelatedLDA, self).__init__(data, T, alpha_beta)
示例#6
0
    def __init__(self, K, pi=None, psi=None, mu=None, Sigma=None):
        """
        Create a PGMultinomial distribution with mean and covariance for psi.

        :param K:       Dimensionality of the multinomial distribution
        :param pi:      Multinomial probability vector (must sum to 1)
        :param psi:     Transformed multinomial probability vector
        :param mu:      Mean of \psi
        :param Sigma:   Covariance of \psi
        """
        assert isinstance(K, int) and K >= 2, "K must be an integer >= 2"
        self.K = K

        assert pi is not None or psi is not None or None not in (mu, Sigma), \
            "pi, psi, or (mu and Sigma) must be specified"

        if pi is not None:
            assert isinstance(pi, np.ndarray) and \
                   pi.shape == (K,) and \
                   np.allclose(pi.sum(), 1.0), \
                "Pi must be a normalized length-K vector"
            self.pi = pi

        if psi is not None:
            assert isinstance(psi, np.ndarray) and \
                   psi.shape == (K-1,), \
                "Psi must be a length-K vector of reals"
            self.psi = psi

        if None not in (mu, Sigma):
            assert isinstance(mu, np.ndarray) and mu.shape == (K,), \
                "Mu must be a length-K vector"

            assert isinstance(Sigma, np.ndarray) and Sigma.shape == (K,K), \
                "Sigma must be a KxK Covariance matrix"
            self.mu = mu
            self.Sigma = Sigma
            self.Lambda = np.linalg.inv(Sigma)

            # If psi and pi have not been given, sample from the prior
            if psi is None and pi is None:
                self.psi = np.random.multivariate_normal(self.mu, self.Sigma)

        # Initialize Polya-gamma augmentation variables
        self.ppgs   = initialize_polya_gamma_samplers()
        self.omega = np.ones(self.K)

        # Initialize the space for the transformed psi variables, rho
        self.rho = np.zeros(self.K)
示例#7
0
def monte_carlo_approx(M=100000):
    ppgs = initialize_polya_gamma_samplers()

    # Compute the left hand side analytically
    loglhs = psi * a - b * np.log1p(np.exp(psi))

    # Compute the right hand side with Monte Carlo
    omegas = np.ones(M)
    ppg.pgdrawvpar(ppgs, b * np.ones(M), np.zeros(M), omegas)
    logrhss = -b * np.log(2) + (a - b / 2.) * psi - 0.5 * omegas * psi**2
    logrhs = logsumexp(logrhss) - np.log(M)

    print("Monte Carlo")
    print("log LHS: ", loglhs)
    print("log RHS: ", logrhs)
def monte_carlo_approx(M=100000):
    ppgs = initialize_polya_gamma_samplers()

    # Compute the left hand side analytically
    loglhs = psi*a - b * np.log1p(np.exp(psi))

    # Compute the right hand side with Monte Carlo
    omegas = np.ones(M)
    ppg.pgdrawvpar(ppgs, b*np.ones(M), np.zeros(M), omegas)
    logrhss = -b * np.log(2) + (a-b/2.)*psi -0.5 * omegas*psi**2
    logrhs = logsumexp(logrhss) - np.log(M)

    print("Monte Carlo")
    print("log LHS: ", loglhs)
    print("log RHS: ", logrhs)
示例#9
0
文件: lda.py 项目: fivejjs/pgmult
    def __init__(self, data, timestamps, K, alpha_theta):
        assert isinstance(data, scipy.sparse.csr.csr_matrix)
        self.alpha_theta = alpha_theta
        self.D, self.V = data.shape
        self.K = K

        self.data = data

        self.timestamps = timestamps
        self.timeidx = self._get_timeidx(timestamps, data)
        self.T = self.timeidx.max() - self.timeidx.min() + 1

        self.ppgs = initialize_polya_gamma_samplers()
        self.pyrngs = initialize_pyrngs()

        self.initialize_parameters()

        self._training_gammalns = gammaln(data.sum(1) + 1).sum() - gammaln(data.data + 1).sum()
示例#10
0
    def __init__(self, K, pi=None, psi=None, mu=None, Sigma=None):
        """
        Create a PGMultinomial distribution with mean and covariance for psi.

        :param K:       Dimensionality of the multinomial distribution
        :param pi:      Multinomial probability vector (must sum to 1)
        :param psi:     Transformed multinomial probability vector
        :param mu:      Mean of \psi
        :param Sigma:   Covariance of \psi
        """
        assert isinstance(K, int) and K >= 2, "K must be an integer >= 2"
        self.K = K

        if all(param is None for param in (pi,psi,mu,Sigma)):
            mu, sigma = compute_psi_cmoments(np.ones(K))
            Sigma = np.diag(sigma)

        if pi is not None:
            if not (isinstance(pi, np.ndarray) and  pi.shape == (K,)
                    and np.isclose(pi.sum(), 1.0)):
                raise ValueError("Pi must be a normalized length-K vector")
            self.pi = pi

        if psi is not None:
            if not (isinstance(psi, np.ndarray) and psi.shape == (K-1,)):
                raise ValueError("Psi must be a (K-1) vector of reals")
            self.psi = psi

        if mu is not None and Sigma is not None:
            if not (isinstance(mu, np.ndarray) and mu.shape == (K-1,)):
                raise ValueError("Mu must be a (K-1) vector")
            if not (isinstance(Sigma, np.ndarray) and Sigma.shape == ((K-1), (K-1))):
                raise ValueError("Sigma must be a K-1 Covariance matrix")
            self.mu = mu
            self.Sigma = Sigma

            # If psi and pi have not been given, sample from the prior
            if psi is None and pi is None:
                self.psi = np.random.multivariate_normal(self.mu, self.Sigma)

        # Initialize Polya-gamma augmentation variables
        self.ppgs = initialize_polya_gamma_samplers()
        self.omega = np.ones(self.K-1)
示例#11
0
    def __init__(self, data, timestamps, K, alpha_theta):
        assert isinstance(data, scipy.sparse.csr.csr_matrix)
        self.alpha_theta = alpha_theta
        self.D, self.V = data.shape
        self.K = K

        self.data = data

        self.timestamps = timestamps
        self.timeidx = self._get_timeidx(timestamps, data)
        self.T = self.timeidx.max() - self.timeidx.min() + 1

        self.ppgs = initialize_polya_gamma_samplers()
        self.pyrngs = initialize_pyrngs()

        self.initialize_parameters()

        self._training_gammalns = \
            gammaln(data.sum(1)+1).sum() - gammaln(data.data+1).sum()
示例#12
0
文件: gp.py 项目: yinsenm/pgmult
 def __init__(self,  K, kernel, D, Z=None, X=None, mu=None, mu_0=None, Sigma_0=None):
     super(_MultinomialGPGibbsSampling, self).__init__(K, kernel, D, Z, X, mu=mu, mu_0=mu_0, Sigma_0=Sigma_0)
     self.ppgs = initialize_polya_gamma_samplers()