示例#1
0
def double_double_cascade_step(dim, embsys, esols, tasks=0):
    r"""
    Given in *embsys* an embedded polynomial system and
    solutions with nonzero slack variables in *esols*, does one step
    in the homotopy cascade, with double double precision arithmetic.
    The dimension of the solution set represented by *embsys*
    and *esols* is the value of *dim*.
    The number of tasks in multithreaded path tracking is given by *tasks*.
    The default zero value of *tasks* indicates no multithreading.
    The list on return contains witness points on
    lower dimensional solution components.
    """
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_dobldobl_cascade_homotopy
    from phcpy.phcpy2c2 import py2c_solve_by_dobldobl_homotopy_continuation
    from phcpy.phcpy2c2 import py2c_solcon_clear_dobldobl_solutions
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_target_solutions_to_container
    from phcpy.interface import store_dobldobl_witness_set
    from phcpy.interface import load_dobldobl_solutions
    store_dobldobl_witness_set(len(embsys), dim, embsys, esols)
    py2c_copy_dobldobl_container_to_start_system()
    py2c_copy_dobldobl_container_to_start_solutions()
    py2c_dobldobl_cascade_homotopy()
    py2c_solve_by_dobldobl_homotopy_continuation(tasks)
    py2c_solcon_clear_dobldobl_solutions()
    py2c_copy_dobldobl_target_solutions_to_container()
    return load_dobldobl_solutions()
示例#2
0
def double_double_cascade_step(dim, embsys, esols, tasks=0):
    r"""
    Given in *embsys* an embedded polynomial system and
    solutions with nonzero slack variables in *esols*, does one step
    in the homotopy cascade, with double double precision arithmetic.
    The dimension of the solution set represented by *embsys*
    and *esols* is the value of *dim*.
    The number of tasks in multithreaded path tracking is given by *tasks*.
    The default zero value of *tasks* indicates no multithreading.
    The list on return contains witness points on
    lower dimensional solution components.
    """
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_dobldobl_cascade_homotopy
    from phcpy.phcpy2c2 import py2c_solve_by_dobldobl_homotopy_continuation
    from phcpy.phcpy2c2 import py2c_solcon_clear_dobldobl_solutions
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_target_solutions_to_container
    from phcpy.interface import store_dobldobl_witness_set
    from phcpy.interface import load_dobldobl_solutions
    store_dobldobl_witness_set(len(embsys), dim, embsys, esols)
    py2c_copy_dobldobl_container_to_start_system()
    py2c_copy_dobldobl_container_to_start_solutions()
    py2c_dobldobl_cascade_homotopy()
    py2c_solve_by_dobldobl_homotopy_continuation(tasks)
    py2c_solcon_clear_dobldobl_solutions()
    py2c_copy_dobldobl_target_solutions_to_container()
    return load_dobldobl_solutions()
示例#3
0
def double_double_track(target, start, sols, gamma=0, tasks=0):
    r"""
    Does path tracking in double double precision.
    On input are a target system, a start system with solutions,
    optionally a (random) gamma constant and the number of tasks.
    The default value zero for *tasks* indicates no multithreading.
    The number of tasks in the multithreading is given by *tasks*.
    The *target* is a list of strings representing the polynomials
    of the target system (which has to be solved).
    The *start* is a list of strings representing the polynomials
    of the start system with known solutions in *sols*.
    The *sols* is a list of strings representing start solutions.
    By default, a random *gamma* constant is generated,
    otherwise *gamma* must be a nonzero complex constant.
    On return are the string representations of the solutions
    computed at the end of the paths.
    """
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_create_dobldobl_homotopy
    from phcpy.phcpy2c2 import py2c_create_dobldobl_homotopy_with_gamma
    from phcpy.phcpy2c2 import py2c_solve_by_dobldobl_homotopy_continuation
    from phcpy.phcpy2c2 import py2c_solcon_clear_dobldobl_solutions
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_target_solutions_to_container
    from phcpy.interface import store_dobldobl_system
    from phcpy.interface import store_dobldobl_solutions
    from phcpy.interface import load_dobldobl_solutions
    from phcpy.solver import number_of_symbols
    dim = number_of_symbols(start)
    store_dobldobl_system(target, nbvar=dim)
    py2c_copy_dobldobl_container_to_target_system()
    store_dobldobl_system(start, nbvar=dim)
    py2c_copy_dobldobl_container_to_start_system()
    # py2c_clear_dobldobl_homotopy()
    if(gamma == 0):
        py2c_create_dobldobl_homotopy()
    else:
        py2c_create_dobldobl_homotopy_with_gamma(gamma.real, gamma.imag)
    store_dobldobl_solutions(dim, sols)
    py2c_copy_dobldobl_container_to_start_solutions()
    py2c_solve_by_dobldobl_homotopy_continuation(tasks)
    py2c_solcon_clear_dobldobl_solutions()
    py2c_copy_dobldobl_target_solutions_to_container()
    return load_dobldobl_solutions()
示例#4
0
def double_double_track(target, start, sols, gamma=0, tasks=0):
    """
    Does path tracking in double double precision.
    On input are a target system, a start system with solutions,
    optionally a (random) gamma constant and the number of tasks.
    The target is a list of strings representing the polynomials
    of the target system (which has to be solved).
    The start is a list of strings representing the polynomials
    of the start system with known solutions in sols.
    The sols is a list of strings representing start solutions.
    By default, a random gamma constant is generated,
    otherwise gamma must be a nonzero complex constant.
    On return are the string representations of the solutions
    computed at the end of the paths.
    """
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_create_dobldobl_homotopy
    from phcpy.phcpy2c2 import py2c_create_dobldobl_homotopy_with_gamma
    from phcpy.phcpy2c2 import py2c_solve_by_dobldobl_homotopy_continuation
    from phcpy.phcpy2c2 import py2c_solcon_clear_dobldobl_solutions
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_target_solutions_to_container
    from phcpy.interface import store_dobldobl_system
    from phcpy.interface import store_dobldobl_solutions
    from phcpy.interface import load_dobldobl_solutions
    from phcpy.solver import number_of_symbols
    dim = number_of_symbols(start)
    store_dobldobl_system(target, nbvar=dim)
    py2c_copy_dobldobl_container_to_target_system()
    store_dobldobl_system(start, nbvar=dim)
    py2c_copy_dobldobl_container_to_start_system()
    # py2c_clear_dobldobl_homotopy()
    if(gamma == 0):
        py2c_create_dobldobl_homotopy()
    else:
        py2c_create_dobldobl_homotopy_with_gamma(gamma.real, gamma.imag)
    store_dobldobl_solutions(dim, sols)
    py2c_copy_dobldobl_container_to_start_solutions()
    py2c_solve_by_dobldobl_homotopy_continuation(tasks)
    py2c_solcon_clear_dobldobl_solutions()
    py2c_copy_dobldobl_target_solutions_to_container()
    return load_dobldobl_solutions()
示例#5
0
def dobldobl_diagonal_homotopy(dim1, sys1, esols1, dim2, sys2, esols2):
    r"""
    Defines a diagonal homotopy to intersect the witness sets defined
    by (*sys1*, *esols1*) and (*sys2*, *esols2*), respectively of dimensions
    *dim1* and *dim2*.  The systems *sys1* and *sys2* are assumed to be square
    and with as many slack variables as the dimension of the solution sets.
    The data is stored in double double precision.
    """
    from phcpy.interface import store_dobldobl_system as storesys
    from phcpy.interface import store_dobldobl_solutions as storesols
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_solutions
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_dobldobl_diagonal_homotopy
    from phcpy.phcpy2c2 import py2c_syscon_number_of_symbols
    from phcpy.phcpy2c2 import py2c_syscon_string_of_symbols
    from phcpy.phcpy2c2 import py2c_diagonal_symbols_doubler
    storesys(sys1)
    symbols = py2c_syscon_string_of_symbols()
    nbsymbs = py2c_syscon_number_of_symbols()
    print 'number of symbols :', nbsymbs
    print 'names of variables :', symbols
    storesols(len(sys1), esols1)
    if (dim1 >= dim2):
        py2c_copy_dobldobl_container_to_target_system()
        py2c_copy_dobldobl_container_to_target_solutions()
    else:
        py2c_copy_dobldobl_container_to_start_system()
        py2c_copy_dobldobl_container_to_start_solutions()
    storesys(sys2)
    storesols(len(sys2), esols2)
    if (dim1 >= dim2):
        py2c_copy_dobldobl_container_to_start_system()
        py2c_copy_dobldobl_container_to_start_solutions()
    else:
        py2c_copy_dobldobl_container_to_target_system()
        py2c_copy_dobldobl_container_to_target_solutions()
    if (dim1 >= dim2):
        py2c_dobldobl_diagonal_homotopy(dim1, dim2)
    else:
        py2c_dobldobl_diagonal_homotopy(dim2, dim1)
    py2c_diagonal_symbols_doubler(nbsymbs - dim1, dim1, len(symbols), symbols)
示例#6
0
def dobldobl_diagonal_homotopy(dim1, sys1, esols1, dim2, sys2, esols2):
    r"""
    Defines a diagonal homotopy to intersect the witness sets defined
    by (*sys1*, *esols1*) and (*sys2*, *esols2*), respectively of dimensions
    *dim1* and *dim2*.  The systems *sys1* and *sys2* are assumed to be square
    and with as many slack variables as the dimension of the solution sets.
    The data is stored in double double precision.
    """
    from phcpy.interface import store_dobldobl_system as storesys
    from phcpy.interface import store_dobldobl_solutions as storesols
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_solutions
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_dobldobl_diagonal_homotopy
    from phcpy.phcpy2c2 import py2c_syscon_number_of_symbols
    from phcpy.phcpy2c2 import py2c_syscon_string_of_symbols
    from phcpy.phcpy2c2 import py2c_diagonal_symbols_doubler
    storesys(sys1)
    symbols = py2c_syscon_string_of_symbols()
    nbsymbs = py2c_syscon_number_of_symbols()
    print 'number of symbols :', nbsymbs
    print 'names of variables :', symbols
    storesols(len(sys1), esols1)
    if(dim1 >= dim2):
        py2c_copy_dobldobl_container_to_target_system()
        py2c_copy_dobldobl_container_to_target_solutions()
    else:
        py2c_copy_dobldobl_container_to_start_system()
        py2c_copy_dobldobl_container_to_start_solutions()
    storesys(sys2)
    storesols(len(sys2), esols2)
    if(dim1 >= dim2):
        py2c_copy_dobldobl_container_to_start_system()
        py2c_copy_dobldobl_container_to_start_solutions()
    else:
        py2c_copy_dobldobl_container_to_target_system()
        py2c_copy_dobldobl_container_to_target_solutions()
    if(dim1 >= dim2):
        py2c_dobldobl_diagonal_homotopy(dim1, dim2)
    else:
        py2c_dobldobl_diagonal_homotopy(dim2, dim1)
    py2c_diagonal_symbols_doubler(nbsymbs-dim1, dim1, len(symbols), symbols)
示例#7
0
def dobldobl_track(target, start, sols, filename="", verbose=False):
    """
    Wraps the tracker for Pade continuation in double double precision.
    On input are a target system, a start system with solutions,
    optionally: a string *filename* and the *verbose* flag.
    The *target* is a list of strings representing the polynomials
    of the target system (which has to be solved).
    The *start* is a list of strings representing the polynomials
    of the start system, with known solutions in *sols*.
    The *sols* is a list of strings representing start solutions.
    On return are the string representations of the solutions
    computed at the end of the paths.
    """
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_target_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_system
    from phcpy.phcpy2c2 import py2c_copy_dobldobl_container_to_start_solutions
    from phcpy.phcpy2c2 import py2c_create_dobldobl_homotopy_with_gamma
    from phcpy.phcpy2c2 import py2c_clear_dobldobl_homotopy
    from phcpy.phcpy2c2 import py2c_clear_dobldobl_operations_data
    from phcpy.interface import store_dobldobl_system
    from phcpy.interface import store_dobldobl_solutions
    from phcpy.interface import load_dobldobl_solutions
    from phcpy.solver import number_of_symbols
    from phcpy.phcpy2c2 import py2c_padcon_dobldobl_track
    dim = number_of_symbols(start)
    store_dobldobl_system(target, nbvar=dim)
    py2c_copy_dobldobl_container_to_target_system()
    store_dobldobl_system(start, nbvar=dim)
    py2c_copy_dobldobl_container_to_start_system()
    (regamma, imgamma) = get_homotopy_continuation_parameter(1)
    store_dobldobl_solutions(dim, sols)
    py2c_copy_dobldobl_container_to_start_solutions()
    nbc = len(filename)
    (regamma, imgamma) = get_homotopy_continuation_parameter(1)
    py2c_create_dobldobl_homotopy_with_gamma(regamma, imgamma)
    fail = py2c_padcon_dobldobl_track(nbc, filename, int(verbose))
    # py2c_clear_dobldobl_homotopy()
    # py2c_clear_dobldobl_operations_data()
    return load_dobldobl_solutions()