示例#1
0
def EstimateExterior(gcpCoo_file, imgCoo_GCP_file, interior_orient,
                     estimate_exterior, unit_gcp, max_orientation_deviation,
                     ransacApprox, angles_eor, pos_eor, directoryOutput):
    try:
        #read object coordinates of GCP (including point ID)
        gcpObjPts_table = np.asarray(
            pd.read_table(gcpCoo_file, header=None, delimiter='\t'))
    except:
        print('failed reading GCP file (object space)')

    try:
        #read pixel coordinates of image points of GCPs (including ID)
        gcpImgPts_table = np.asarray(
            pd.read_table(imgCoo_GCP_file, header=None, delimiter='\t'))
    except:
        print('failed reading GCP file (imgage space)')
    gcpPts_ids = gcpImgPts_table[:, 0]
    gcpPts_ids = gcpPts_ids.reshape(gcpPts_ids.shape[0], 1)
    gcpImgPts_to_undist = gcpImgPts_table[:, 1:3]

    #undistort image measurements of GCP
    gcpImgPts_undist = photogrF.undistort_img_coos(gcpImgPts_to_undist,
                                                   interior_orient, False)
    gcpImgPts_undist = np.hstack((gcpPts_ids, gcpImgPts_undist))

    #get exterior orientation
    try:
        #estimate exterior orientation from GCPs
        if estimate_exterior:
            if ransacApprox:
                exteriorApprox = np.asarray([0, 0, 0, 0, 0, 0]).reshape(6, 1)
            else:
                exteriorApprox = np.vstack((pos_eor, angles_eor)) * unit_gcp

            eor_mat = photogrF.getExteriorCameraGeometry(
                gcpImgPts_undist, gcpObjPts_table, interior_orient, unit_gcp,
                max_orientation_deviation, ransacApprox, exteriorApprox, True,
                directoryOutput)

        #...or use predefined camera pose information
        else:
            rot_mat = photogrF.rot_Matrix(angles_eor[0], angles_eor[1],
                                          angles_eor[2], 'radians').T
            rot_mat = rot_mat * np.array([[-1, -1, -1], [1, 1, 1],
                                          [-1, -1, -1]])

            eor_mat = np.hstack(
                (rot_mat.T, pos_eor
                 ))  #if rotation matrix received from opencv transpose rot_mat
            eor_mat = np.vstack((eor_mat, [0, 0, 0, 1]))
            print(eor_mat)

        eor_mat[0:3, 3] = eor_mat[0:3, 3] * unit_gcp

    except Exception as e:
        print(e)
        print('Referencing image failed\n')

    return eor_mat
def LineWaterSurfaceIntersect(imgPts, cameraGeometry_interior, cameraGeometry_exterior, pointCloud, epsilon=1e-6):    
    #get water plane with plane fitting (when water surface not horizontal)
    planeParam = ausgl_ebene(pointCloud)   #planeParam = [a,b,c,d]
    try:
        np.sum(np.asarray(planeParam))
        return np.asarray(planeParam)
    except Exception as e:
        _, _, exc_tb = sys.exc_info()
        print(e, 'line ' + str(exc_tb.tb_lineno))
        print('plane fitting failed')
        return    

    #calculate plane normal
    planeNormal = np.array([planeParam[0],planeParam[1],planeParam[2]]) #normal vector
    planePoint = np.array([0,0,-1*planeParam[3]/planeParam[2]]) #support vector (for plane in normal form)
    
    #calculate angle of plane
    PlanarPlaneNorm = np.asarray([0,0,1])
    len_NivelPlaneNorm = np.sum(np.sqrt((PlanarPlaneNorm**2)))
    len_planeNormal = np.sum(np.sqrt((planeNormal**2)))
    zaehler = planeNormal[0] * PlanarPlaneNorm[0] + planeNormal[1] * PlanarPlaneNorm[1] + planeNormal[2] * PlanarPlaneNorm[2]
    angleNormVec = np.arccos(zaehler / (len_NivelPlaneNorm * len_planeNormal)) * 180/np.pi
    print('angle of plane: ' + str(angleNormVec))
    
    #origin of ray is projection center
    rayPoint = np.asarray([cameraGeometry_exterior[0], cameraGeometry_exterior[1], cameraGeometry_exterior[2]])
    
    #transform image ray into object space
    imgPts_undist_mm = photo_tool.undistort_img_coos(imgPts, cameraGeometry_interior)
    rayDirections = photo_tool.imgDepthPts_to_objSpace(imgPts_undist_mm, cameraGeometry_exterior, cameraGeometry_interior.resolution_x, cameraGeometry_interior.resolution_y, 
                                                     cameraGeometry_interior.sensor_size_x / cameraGeometry_interior.resolution_x, cameraGeometry_interior.ck)   
        
    PtsIntersectedWaterPlane = []
    for ray in rayDirections:        
        #perform intersection 
        ndotu = planeNormal.dot(ray)
        if abs(ndotu) < epsilon:
            raise RuntimeError("no intersection with plane possible")
     
        w = rayPoint - planePoint
        si = -planeNormal.dot(w) / ndotu
        Psi = w + si * ray + planePoint
        
        PtsIntersectedWaterPlane.append(Psi)
        
    PtsIntersectedWaterPlane = np.asarray(PtsIntersectedWaterPlane)
    
    return PtsIntersectedWaterPlane
def LinePlaneIntersect(imgPts, waterlevel, cameraGeometry_interior, cameraGeometry_exterior, unit_gcp=1, epsilon=1e-6):
    #assume water is horizontal plane
    planeNormal = np.array([0,0,1]) #normal vector
    planePoint = np.array([0,0,waterlevel*unit_gcp]) #support vector (for plane in normal form)   
    planeNormal_norm = planeNormal * (1/np.linalg.norm(planeNormal))
    
    #origin of ray is projection center
    rayPoint = np.asarray([cameraGeometry_exterior[0,3], cameraGeometry_exterior[1,3], cameraGeometry_exterior[2,3]])
    
    #transform image ray into object space
    imgPts_undist_mm = photo_tool.undistort_img_coos(imgPts, cameraGeometry_interior)
    imgPts_undist_forObj_x = imgPts_undist_mm[:,0] * -1
    imgPts_undist_forObj_y = imgPts_undist_mm[:,1]
    imgPts_undist_forObj = np.hstack((imgPts_undist_forObj_x.reshape(imgPts_undist_forObj_x.shape[0],1), imgPts_undist_forObj_y.reshape(imgPts_undist_forObj_y.shape[0],1)))
    imgPts_undist_forObj = np.hstack((imgPts_undist_forObj, np.ones((imgPts_undist_mm.shape[0],1)) * cameraGeometry_interior.ck))
    
    #transform into object space
    imgPts_XYZ = np.matrix(cameraGeometry_exterior) * np.matrix(np.vstack((imgPts_undist_forObj.T, np.ones(imgPts_undist_forObj.shape[0]))))
    rayPts = np.asarray(imgPts_XYZ.T)[:,0:3] 
    
    #plot ray of camera viewing direction
#     z_range = np.asarray(range(500))
#     Z_range = z_range.reshape(z_range.shape[0],1) * (np.ones((z_range.shape[0],3)) * cameraGeometry_exterior[0:3,2].T) + np.ones((z_range.shape[0],3)) * cameraGeometry_exterior[0:3,3].T
  
    rayDirections = np.ones((rayPts.shape)) * rayPoint - rayPts    
    rayDirections_norm = rayDirections * (1/np.linalg.norm(rayDirections))

    PtsIntersectedWaterPlane = []
    for ray in rayDirections_norm:        
        #perform intersection 
        ndotu = planeNormal_norm.dot(ray)
        if abs(ndotu) < epsilon:
            raise RuntimeError("no intersection with plane possible")
     
        w = rayPoint - planePoint
        si = -planeNormal_norm.dot(w) / ndotu
        Psi = w + si * ray + planePoint
        
        PtsIntersectedWaterPlane.append(Psi)
        
    PtsIntersectedWaterPlane = np.asarray(PtsIntersectedWaterPlane)
    
    return PtsIntersectedWaterPlane
def getWaterborderXYZ(borderPts, ptCloud, exteriorOrient, interiorOrient):

    #project points into depth image
    xyd_rgb_map = photo_tool.project_pts_into_img(exteriorOrient,
                                                  interiorOrient, ptCloud,
                                                  False)
    if xyd_rgb_map.any() == None:
        print('point projection into image failed')
        return

    #undistort border points
    borderPts_undist = photo_tool.undistort_img_coos(borderPts, interiorOrient,
                                                     False)
    borderPts_undist_px = photo_tool.metric_to_pixel(
        borderPts_undist, interiorOrient.resolution_x,
        interiorOrient.resolution_y, interiorOrient.sensor_size_x,
        interiorOrient.sensor_size_y)

    #find nearest depth value to border points in depth image
    borderPts_xyd, borderPtsNN_undist_px = NN_pts(xyd_rgb_map,
                                                  borderPts_undist_px, 5,
                                                  False)
    if borderPts_xyd.any() == None:
        print('no NN for border found')
        return

    borderPts_xyd_mm = photo_tool.pixel_to_metric(borderPts_xyd[:, 0:2],
                                                  interiorOrient.resolution_x,
                                                  interiorOrient.resolution_y,
                                                  interiorOrient.sensor_size_x,
                                                  interiorOrient.sensor_size_y)

    borderPts_mm_d = borderPts_xyd[:, 2]
    xyd_map = np.hstack(
        (borderPts_xyd_mm, borderPts_mm_d.reshape(borderPts_mm_d.shape[0], 1)))
    xyd_map_mm = photo_tool.imgDepthPts_to_objSpace(
        xyd_map, exteriorOrient, interiorOrient.resolution_x,
        interiorOrient.resolution_y,
        interiorOrient.sensor_size_x / interiorOrient.resolution_x,
        interiorOrient.ck)

    return xyd_map_mm, borderPtsNN_undist_px
def FeatureTracking(template_width, template_height, search_area_x_CC, search_area_y_CC, shiftSearchFromCenter_x, shiftSearchFromCenter_y,
                    frameCount, FT_forNthNberFrames, TrackEveryNthFrame, dir_imgs, img_list, featuresToTrack, interior_orient,
                    performLSM, lsmBuffer, threshLSM, subpixel, trackedFeaturesOutput_undist, save_gif, imagesForGif, directoryOutput,
                    lk, initialEstimatesLK, maxDistBackForward_px=1):
    #prepare function input
    template_size = np.asarray([template_width, template_height])
    search_area = np.asarray([search_area_x_CC, search_area_y_CC])
    shiftSearchArea = np.asarray([shiftSearchFromCenter_x, shiftSearchFromCenter_y])
    
    #save initial pixel position of features
    trackedFeatures0_undist = photogrF.undistort_img_coos(featuresToTrack[:,1:3], interior_orient)
    trackedFeatures0_undist_px = photogrF.metric_to_pixel(trackedFeatures0_undist, interior_orient.resolution_x, interior_orient.resolution_y, 
                                                          interior_orient.sensor_size_x, interior_orient.sensor_size_y)        
    frame_name0 = np.asarray([img_list[frameCount] for x in range(featuresToTrack.shape[0])])
    trackedFeaturesOutput_undist0 = np.hstack((frame_name0, featuresToTrack[:,0]))
    trackedFeaturesOutput_undist0 = np.hstack((trackedFeaturesOutput_undist0, trackedFeatures0_undist_px[:,0]))
    trackedFeaturesOutput_undist0 = np.hstack((trackedFeaturesOutput_undist0, trackedFeatures0_undist_px[:,1]))
    trackedFeaturesOutput_undist0 = trackedFeaturesOutput_undist0.reshape(4, frame_name0.shape[0]).T
    trackedFeaturesOutput_undist.extend(trackedFeaturesOutput_undist0) 
    
    #loop through images
    img_nbr_tracking = frameCount
    while img_nbr_tracking < frameCount+FT_forNthNberFrames:
        #read images
        templateImg = cv2.imread(dir_imgs + img_list[img_nbr_tracking], 0)
        searchImg = cv2.imread(dir_imgs + img_list[img_nbr_tracking+TrackEveryNthFrame], 0)
        
        print('template image: ' + img_list[img_nbr_tracking] + ', search image: ' + 
                      img_list[img_nbr_tracking+TrackEveryNthFrame] + '\n')
        
        #track features per image sequence        
        if lk:
            #tracking (matching templates) with Lucas Kanade
            try:
                #consider knowledge about flow velocity and direction (use shift of search window)
                if initialEstimatesLK == True:
                    featureEstimatesNextFrame = featuresToTrack[:,1:]
                    x_initialGuess, y_initialGuess = featureEstimatesNextFrame[:,0], featureEstimatesNextFrame[:,1]
                    x_initialGuess = x_initialGuess.reshape(x_initialGuess.shape[0],1) + np.ones((featureEstimatesNextFrame.shape[0],1)) * shiftSearchFromCenter_x
                    y_initialGuess = y_initialGuess.reshape(y_initialGuess.shape[0],1) + np.ones((featureEstimatesNextFrame.shape[0],1)) * shiftSearchFromCenter_y
                    featureEstimatesNextFrame = np.hstack((x_initialGuess, y_initialGuess))
                #...or not
                else:
                    featureEstimatesNextFrame = None
                
                #perform tracking
                trackedFeaturesLK, status = trackF.performFeatureTrackingLK(templateImg, searchImg, featuresToTrack[:,1:],
                                                                            initialEstimatesLK, featureEstimatesNextFrame,
                                                                            search_area_x_CC, search_area_y_CC, maxDistBackForward_px)
                
                featuresId = featuresToTrack[:,0]
                trackedFeaturesLKFiltered = np.hstack((featuresId.reshape(featuresId.shape[0],1), trackedFeaturesLK))
                trackedFeaturesLKFiltered = np.hstack((trackedFeaturesLKFiltered, status))
                
                #remove points with erroneous LK tracking (ccheck column 3)
                trackedFeaturesLK_px = trackedFeaturesLKFiltered[~np.all(trackedFeaturesLKFiltered == 0, axis=1)]
                
                #drop rows with nan values (which are features that failed back-forward tracking test)
                trackedFeaturesLK_pxDF = pd.DataFrame(trackedFeaturesLK_px)
                trackedFeaturesLK_pxDF = trackedFeaturesLK_pxDF.dropna()
                trackedFeaturesLK_px = np.asarray(trackedFeaturesLK_pxDF)
                
                trackedFeatures = trackedFeaturesLK_px[:,0:3]
                
                #undistort tracked feature measurement
                trackedFeature_undist = photogrF.undistort_img_coos(trackedFeaturesLK_px[:,1:3], interior_orient)
                trackedFeature_undist_px = photogrF.metric_to_pixel(trackedFeature_undist, interior_orient.resolution_x, interior_orient.resolution_y, 
                                                                    interior_orient.sensor_size_x, interior_orient.sensor_size_y)    

                frameName = np.asarray([img_list[img_nbr_tracking+TrackEveryNthFrame] for x in range(trackedFeaturesLK_px.shape[0])])
                trackedFeaturesOutput_undistArr = np.hstack((frameName, trackedFeaturesLK_px[:,0]))
                trackedFeaturesOutput_undistArr = np.hstack((trackedFeaturesOutput_undistArr, trackedFeature_undist_px[:,0]))
                trackedFeaturesOutput_undistArr = np.hstack((trackedFeaturesOutput_undistArr, trackedFeature_undist_px[:,1]))
                trackedFeaturesOutput_undistArr = trackedFeaturesOutput_undistArr.reshape(4, frameName.shape[0]).T
                
                trackedFeaturesOutput_undist.extend(trackedFeaturesOutput_undistArr)          
                
            except Exception as e:
                print(e)
                print('stopped tracking features with LK after frame ' + img_list[img_nbr_tracking])              
        
        else:
            #tracking (matching templates) with NCC
            trackedFeatures = []     
            for featureToTrack in featuresToTrack:
                
                try:
                    #perform tracking
                    trackedFeature_px = trackF.performFeatureTracking(template_size, search_area, featureToTrack[1:], templateImg, searchImg, 
                                                                      shiftSearchArea, performLSM, lsmBuffer, threshLSM, subpixel, False)
                    
                    #check backwards
                    trackedFeature_pxCheck = trackF.performFeatureTracking(template_size, search_area, trackedFeature_px, searchImg, templateImg, 
                                                                           -1*shiftSearchArea, performLSM, lsmBuffer, threshLSM, subpixel, False)                    
                    #set points that fail backward forward tracking test to nan
                    distBetweenBackForward = abs(featureToTrack[1:]-trackedFeature_pxCheck).reshape(-1, 2).max(-1)
                    if distBetweenBackForward > maxDistBackForward_px:
                        print('feature ' + str(featureToTrack[0]) + ' failed backward test.')
                        x = 1/0
                    
                    #join tracked feature and id of feature
                    trackedFeatures.append([featureToTrack[0], trackedFeature_px[0], trackedFeature_px[1]])
                    
                    #undistort tracked feature measurement
                    trackedFeature_undist = photogrF.undistort_img_coos(trackedFeature_px.reshape(1,2), interior_orient)
                    trackedFeature_undist_px = photogrF.metric_to_pixel(trackedFeature_undist, interior_orient.resolution_x, interior_orient.resolution_y, 
                                                                        interior_orient.sensor_size_x, interior_orient.sensor_size_y)    
                    trackedFeaturesOutput_undist.append([img_list[img_nbr_tracking+TrackEveryNthFrame], int(featureToTrack[0]), 
                                                         trackedFeature_undist_px[0,0], trackedFeature_undist_px[0,1]])
                        
                except:
                    print('stopped tracking feature ' + str(featureToTrack[0]) + ' after frame ' 
                          + img_list[img_nbr_tracking] + '\n')     
            
            trackedFeatures = np.asarray(trackedFeatures)
                
        print('nbr of tracked features: ' + str(trackedFeatures.shape[0]) + '\n')
    
        #for visualization of tracked features in gif
        featuers_end, featuers_start, _ = drawF.assignPtsBasedOnID(trackedFeatures, featuresToTrack)    
        arrowsImg = drawF.drawArrowsOntoImg(templateImg, featuers_start, featuers_end)                                
        
        if save_gif:
            arrowsImg.savefig(directoryOutput + 'temppFT.jpg', dpi=150, pad_inches=0)
            imagesForGif.append(cv2.imread(directoryOutput + 'temppFT.jpg')) 
        else:
            arrowsImg.savefig(directoryOutput + 'temppFT' + str(frameCount) + '.jpg', dpi=150, pad_inches=0)           
        arrowsImg.close()
        del arrowsImg
                            
        featuresToTrack = trackedFeatures
    
        img_nbr_tracking = img_nbr_tracking + TrackEveryNthFrame
        
    return trackedFeaturesOutput_undist, imagesForGif
#read point cloud
pt_cloud_table = pd.read_table(ptCloud_file,
                               header=None,
                               delimiter=ptCloud_separator)
ptCloud = np.asarray(pt_cloud_table)
del pt_cloud_table

#read pixel coordinates of image points of GCPs (including ID)
gcpImgPts_table = pd.read_table(imgCoo_GCP_file, header=None)
gcpImgPts_table = np.asarray(gcpImgPts_table)
gcpPts_ids = gcpImgPts_table[:, 0]
gcpPts_ids = gcpPts_ids.reshape(gcpPts_ids.shape[0], 1)
gcpImgPts_to_undist = gcpImgPts_table[:, 1:3]

#undistort image measurements of GCP
gcpImgPts_undist = photogrF.undistort_img_coos(gcpImgPts_to_undist,
                                               interior_orient, False)
gcpImgPts_undist = np.hstack((gcpPts_ids, gcpImgPts_undist))

#read object coordinates of GCP (including point ID)
gcpObjPts_table = pd.read_table(gcpCoo_file, header=None)
gcpObjPts_table = np.asarray(gcpObjPts_table)

#read image names in folder
img_list = []
for img_file in os.listdir(dir_imgs):
    if '.png' in img_file:
        img_list.append(img_file)
img_list = sorted(img_list)

#prepare output
if not os.path.exists(directoryOutput):