def __init__(self, features=None, attributes=None, **kwargs): super(FeatureView, self).__init__(**kwargs) self.state_attrs += ('fixed_channels', 'feature_scaling') assert features self.features = features self._lim = 1 self.grid_dim = _get_default_grid() # 2D array where every item a string like `0A,1B` self.n_rows, self.n_cols = np.array(self.grid_dim).shape self.canvas.set_layout('grid', shape=(self.n_rows, self.n_cols)) self.canvas.enable_lasso() # Channels being shown. self.channel_ids = None # Attributes: extra features. This is a dictionary # {name: array} # where each array is a `(n_spikes,)` array. self.attributes = attributes or {} self.visual = ScatterVisual() self.canvas.add_visual(self.visual) self.text_visual = TextVisual() self.canvas.add_visual(self.text_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual)
def __init__(self, waveforms=None, waveforms_type=None, sample_rate=None, **kwargs): self._overlap = False self.do_show_labels = True self.channel_ids = None self.filtered_tags = () self.wave_duration = 0. # updated in the plotting method self.data_bounds = None self.sample_rate = sample_rate self._status_suffix = '' assert sample_rate > 0., "The sample rate must be provided to the waveform view." # Initialize the view. super(WaveformView, self).__init__(**kwargs) self.state_attrs += ('waveforms_type', 'overlap', 'do_show_labels') self.local_state_attrs += ('box_scaling', 'probe_scaling') # Box and probe scaling. self.canvas.set_layout('boxed', box_pos=np.zeros((1, 2))) # Ensure waveforms is a dictionary, even if there is a single waveforms type. waveforms = waveforms or {} waveforms = waveforms if isinstance(waveforms, dict) else { 'waveforms': waveforms } self.waveforms = waveforms # Rotating property waveforms types. self.waveforms_types = RotatingProperty() for name, value in self.waveforms.items(): self.waveforms_types.add(name, value) # Current waveforms type. self.waveforms_types.set(waveforms_type) assert self.waveforms_type in self.waveforms self.text_visual = TextVisual() self.canvas.add_visual(self.text_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) self.tick_visual = UniformScatterVisual(marker='vbar', color=self.ax_color, size=self.tick_size) self.canvas.add_visual(self.tick_visual) # Two types of visuals: thin raw line visual for normal waveforms, thick antialiased # agg plot visual for mean and template waveforms. self.waveform_agg_visual = PlotAggVisual() self.waveform_visual = PlotVisual() self.canvas.add_visual(self.waveform_agg_visual) self.canvas.add_visual(self.waveform_visual)
class WaveformView(ScalingMixin, ManualClusteringView): """This view shows the waveforms of the selected clusters, on relevant channels, following the probe geometry. Constructor ----------- waveforms : dict of functions Every function maps a cluster id to a Bunch with the following attributes: * `data` : a 3D array `(n_spikes, n_samples, n_channels_loc)` * `channel_ids` : the channel ids corresponding to the third dimension in `data` * `channel_labels` : a list of channel labels for every channel in `channel_ids` * `channel_positions` : a 2D array with the coordinates of the channels on the probe * `masks` : a 2D array `(n_spikes, n_channels)` with the waveforms masks * `alpha` : the alpha transparency channel The keys of the dictionary are called **waveform types**. The `next_waveforms_type` action cycles through all available waveform types. The key `waveforms` is mandatory. waveforms_type : str Default key of the waveforms dictionary to plot initially. """ # Do not show too many clusters. max_n_clusters = 8 _default_position = 'right' ax_color = (.75, .75, .75, 1.) tick_size = 5. cluster_ids = () default_shortcuts = { 'toggle_waveform_overlap': 'o', 'toggle_show_labels': 'ctrl+l', 'next_waveforms_type': 'w', 'previous_waveforms_type': 'shift+w', 'toggle_mean_waveforms': 'm', # Box scaling. 'widen': 'ctrl+right', 'narrow': 'ctrl+left', 'increase': 'ctrl+up', 'decrease': 'ctrl+down', 'change_box_size': 'ctrl+wheel', # Probe scaling. 'extend_horizontally': 'shift+right', 'shrink_horizontally': 'shift+left', 'extend_vertically': 'shift+up', 'shrink_vertically': 'shift+down', } default_snippets = { 'change_n_spikes_waveforms': 'wn', } def __init__(self, waveforms=None, waveforms_type=None, sample_rate=None, **kwargs): self._overlap = False self.do_show_labels = True self.channel_ids = None self.filtered_tags = () self.wave_duration = 0. # updated in the plotting method self.data_bounds = None self.sample_rate = sample_rate self._status_suffix = '' assert sample_rate > 0., "The sample rate must be provided to the waveform view." # Initialize the view. super(WaveformView, self).__init__(**kwargs) self.state_attrs += ('waveforms_type', 'overlap', 'do_show_labels') self.local_state_attrs += ('box_scaling', 'probe_scaling') # Box and probe scaling. self.canvas.set_layout('boxed', box_pos=np.zeros((1, 2))) # Ensure waveforms is a dictionary, even if there is a single waveforms type. waveforms = waveforms or {} waveforms = waveforms if isinstance(waveforms, dict) else { 'waveforms': waveforms } self.waveforms = waveforms # Rotating property waveforms types. self.waveforms_types = RotatingProperty() for name, value in self.waveforms.items(): self.waveforms_types.add(name, value) # Current waveforms type. self.waveforms_types.set(waveforms_type) assert self.waveforms_type in self.waveforms self.text_visual = TextVisual() self.canvas.add_visual(self.text_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) self.tick_visual = UniformScatterVisual(marker='vbar', color=self.ax_color, size=self.tick_size) self.canvas.add_visual(self.tick_visual) # Two types of visuals: thin raw line visual for normal waveforms, thick antialiased # agg plot visual for mean and template waveforms. self.waveform_agg_visual = PlotAggVisual() self.waveform_visual = PlotVisual() self.canvas.add_visual(self.waveform_agg_visual) self.canvas.add_visual(self.waveform_visual) # Internal methods # ------------------------------------------------------------------------- @property def _current_visual(self): if self.waveforms_type == 'waveforms': return self.waveform_visual else: return self.waveform_agg_visual def _get_data_bounds(self, bunchs): m = min(_min(b.data) for b in bunchs) M = max(_max(b.data) for b in bunchs) # Symmetrize on the y axis. M = max(abs(m), abs(M)) return [-1, -M, +1, M] def get_clusters_data(self): if self.waveforms_type not in self.waveforms: return bunchs = [ self.waveforms_types.get()(cluster_id) for cluster_id in self.cluster_ids ] clu_offsets = _get_clu_offsets(bunchs) n_clu = max(clu_offsets) + 1 # Offset depending on the overlap. for i, (bunch, offset) in enumerate(zip(bunchs, clu_offsets)): bunch.index = i bunch.offset = offset bunch.n_clu = n_clu bunch.color = selected_cluster_color(i, bunch.get('alpha', .75)) return bunchs def _plot_cluster(self, bunch): wave = bunch.data if wave is None or not wave.size: return channel_ids_loc = bunch.channel_ids n_channels = len(channel_ids_loc) masks = bunch.get('masks', np.ones((wave.shape[0], n_channels))) # By default, this is 0, 1, 2 for the first 3 clusters. # But it can be customized when displaying several sets # of waveforms per cluster. n_spikes_clu, n_samples = wave.shape[:2] assert wave.shape[2] == n_channels assert masks.shape == (n_spikes_clu, n_channels) # Find the x coordinates. t = get_linear_x(n_spikes_clu * n_channels, n_samples) t = _overlap_transform(t, offset=bunch.offset, n=bunch.n_clu, overlap=self.overlap) # HACK: on the GPU, we get the actual masks with fract(masks) # since we add the relative cluster index. We need to ensure # that the masks is never 1.0, otherwise it is interpreted as # 0. eps = .001 masks = eps + (1 - 2 * eps) * masks # NOTE: we add the cluster index which is used for the # computation of the depth on the GPU. masks += bunch.index # Generate the box index (one number per channel). box_index = _index_of(channel_ids_loc, self.channel_ids) box_index = np.tile(box_index, n_spikes_clu) # Find the correct number of vertices depending on the current waveform visual. if self._current_visual == self.waveform_visual: # PlotVisual box_index = np.repeat(box_index, n_samples) assert box_index.size == n_spikes_clu * n_channels * n_samples else: # PlotAggVisual box_index = np.repeat(box_index, 2 * (n_samples + 2)) assert box_index.size == n_spikes_clu * n_channels * 2 * ( n_samples + 2) # Generate the waveform array. wave = np.transpose(wave, (0, 2, 1)) nw = n_spikes_clu * n_channels wave = wave.reshape((nw, n_samples)) assert self.data_bounds is not None self._current_visual.add_batch_data(x=t, y=wave, color=bunch.color, masks=masks, box_index=box_index, data_bounds=self.data_bounds) # Waveform axes. # -------------- # Horizontal y=0 lines. ax_db = self.data_bounds a, b = _overlap_transform(np.array([-1, 1]), offset=bunch.offset, n=bunch.n_clu, overlap=self.overlap) box_index = _index_of(channel_ids_loc, self.channel_ids) box_index = np.repeat(box_index, 2) box_index = np.tile(box_index, n_spikes_clu) hpos = np.tile([[a, 0, b, 0]], (nw, 1)) assert box_index.size == hpos.shape[0] * 2 self.line_visual.add_batch_data( pos=hpos, color=self.ax_color, data_bounds=ax_db, box_index=box_index, ) # Vertical ticks every millisecond. steps = np.arange(np.round(self.wave_duration * 1000)) # A vline every millisecond. x = .001 * steps # Scale to [-1, 1], same coordinates as the waveform points. x = -1 + 2 * x / self.wave_duration # Take overlap into account. x = _overlap_transform(x, offset=bunch.offset, n=bunch.n_clu, overlap=self.overlap) x = np.tile(x, len(channel_ids_loc)) # Generate the box index. box_index = _index_of(channel_ids_loc, self.channel_ids) box_index = np.repeat(box_index, x.size // len(box_index)) assert x.size == box_index.size self.tick_visual.add_batch_data( x=x, y=np.zeros_like(x), data_bounds=ax_db, box_index=box_index, ) def _plot_labels(self, channel_ids, n_clusters, channel_labels): # Add channel labels. if not self.do_show_labels: return self.text_visual.reset_batch() for i, ch in enumerate(channel_ids): label = channel_labels[ch] self.text_visual.add_batch_data( pos=[-1, 0], text=str(label), anchor=[-1.25, 0], box_index=i, ) self.canvas.update_visual(self.text_visual) def plot(self, **kwargs): """Update the view with the current cluster selection.""" if not self.cluster_ids: return bunchs = self.get_clusters_data() if not bunchs: return # All channel ids appearing in all selected clusters. channel_ids = sorted(set(_flatten([d.channel_ids for d in bunchs]))) self.channel_ids = channel_ids if bunchs[0].data is not None: self.wave_duration = bunchs[0].data.shape[1] / float( self.sample_rate) else: # pragma: no cover self.wave_duration = 1. # Channel labels. channel_labels = {} for d in bunchs: chl = d.get('channel_labels', ['%d' % ch for ch in d.channel_ids]) channel_labels.update({ channel_id: chl[i] for i, channel_id in enumerate(d.channel_ids) }) # Update the Boxed box positions as a function of the selected channels. if channel_ids: self.canvas.boxed.update_boxes(_get_box_pos(bunchs, channel_ids)) self.data_bounds = self.data_bounds or self._get_data_bounds(bunchs) self._current_visual.reset_batch() self.line_visual.reset_batch() self.tick_visual.reset_batch() for bunch in bunchs: self._plot_cluster(bunch) self.canvas.update_visual(self.tick_visual) self.canvas.update_visual(self.line_visual) self.canvas.update_visual(self._current_visual) self._plot_labels(channel_ids, len(self.cluster_ids), channel_labels) # Only show the current waveform visual. if self._current_visual == self.waveform_visual: self.waveform_visual.show() self.waveform_agg_visual.hide() elif self._current_visual == self.waveform_agg_visual: self.waveform_agg_visual.show() self.waveform_visual.hide() self.canvas.update() self.update_status() def attach(self, gui): """Attach the view to the GUI.""" super(WaveformView, self).attach(gui) self.actions.add(self.toggle_waveform_overlap, checkable=True, checked=self.overlap) self.actions.add(self.toggle_show_labels, checkable=True, checked=self.do_show_labels) self.actions.add(self.next_waveforms_type) self.actions.add(self.previous_waveforms_type) self.actions.add(self.toggle_mean_waveforms, checkable=True) self.actions.separator() # Box scaling. self.actions.add(self.widen) self.actions.add(self.narrow) self.actions.separator() # Probe scaling. self.actions.add(self.extend_horizontally) self.actions.add(self.shrink_horizontally) self.actions.separator() self.actions.add(self.extend_vertically) self.actions.add(self.shrink_vertically) self.actions.separator() @property def boxed(self): """Layout instance.""" return self.canvas.boxed @property def status(self): return self.waveforms_type # Overlap # ------------------------------------------------------------------------- @property def overlap(self): """Whether to overlap the waveforms belonging to different clusters.""" return self._overlap @overlap.setter def overlap(self, value): self._overlap = value self.plot() def toggle_waveform_overlap(self, checked): """Toggle the overlap of the waveforms.""" self.overlap = checked # Box scaling # ------------------------------------------------------------------------- def widen(self): """Increase the horizontal scaling of the waveforms.""" self.boxed.expand_box_width() def narrow(self): """Decrease the horizontal scaling of the waveforms.""" self.boxed.shrink_box_width() @property def box_scaling(self): return self.boxed._box_scaling @box_scaling.setter def box_scaling(self, value): self.boxed._box_scaling = value def _get_scaling_value(self): return self.boxed._box_scaling[1] def _set_scaling_value(self, value): w, h = self.boxed._box_scaling self.boxed._box_scaling = (w, value) self.boxed.update() # Probe scaling # ------------------------------------------------------------------------- @property def probe_scaling(self): return self.boxed._layout_scaling @probe_scaling.setter def probe_scaling(self, value): self.boxed._layout_scaling = value def extend_horizontally(self): """Increase the horizontal scaling of the probe.""" self.boxed.expand_layout_width() def shrink_horizontally(self): """Decrease the horizontal scaling of the waveforms.""" self.boxed.shrink_layout_width() def extend_vertically(self): """Increase the vertical scaling of the waveforms.""" self.boxed.expand_layout_height() def shrink_vertically(self): """Decrease the vertical scaling of the waveforms.""" self.boxed.shrink_layout_height() # Navigation # ------------------------------------------------------------------------- def toggle_show_labels(self, checked): """Whether to show the channel ids or not.""" self.do_show_labels = checked self.text_visual.show() if checked else self.text_visual.hide() self.canvas.update() def on_mouse_click(self, e): """Select a channel by clicking on a box in the waveform view.""" b = e.button nums = tuple('%d' % i for i in range(10)) if 'Control' in e.modifiers or e.key in nums: key = int(e.key) if e.key in nums else None # Get mouse position in NDC. channel_idx, _ = self.canvas.boxed.box_map(e.pos) channel_id = self.channel_ids[channel_idx] logger.debug("Click on channel_id %d with key %s and button %s.", channel_id, key, b) emit('select_channel', self, channel_id=channel_id, key=key, button=b) @property def waveforms_type(self): return self.waveforms_types.current @waveforms_type.setter def waveforms_type(self, value): self.waveforms_types.set(value) def next_waveforms_type(self): """Switch to the next waveforms type.""" self.waveforms_types.next() logger.debug("Switch to waveforms type %s.", self.waveforms_type) self.plot() def previous_waveforms_type(self): """Switch to the previous waveforms type.""" self.waveforms_types.previous() logger.debug("Switch to waveforms type %s.", self.waveforms_type) self.plot() def toggle_mean_waveforms(self, checked): """Switch to the `mean_waveforms` type, if it is available.""" if self.waveforms_type == 'mean_waveforms' and 'waveforms' in self.waveforms: self.waveforms_types.set('waveforms') logger.debug("Switch to raw waveforms.") self.plot() elif 'mean_waveforms' in self.waveforms: self.waveforms_types.set('mean_waveforms') logger.debug("Switch to mean waveforms.") self.plot()
class CorrelogramView(ScalingMixin, ManualClusteringView): """A view showing the autocorrelogram of the selected clusters, and all cross-correlograms of cluster pairs. Constructor ----------- correlograms : function Maps `(cluster_ids, bin_size, window_size)` to an `(n_clusters, n_clusters, n_bins) array`. firing_rate : function Maps `(cluster_ids, bin_size)` to an `(n_clusters, n_clusters) array` """ # Do not show too many clusters. max_n_clusters = 20 _default_position = 'left' cluster_ids = () # Bin size, in seconds. bin_size = 1e-3 # Window size, in seconds. window_size = 50e-3 # Refactory period, in seconds refractory_period = 2e-3 # Whether the normalization is uniform across entire rows or not. uniform_normalization = False default_shortcuts = { 'change_window_size': 'ctrl+wheel', 'change_bin_size': 'alt+wheel', } default_snippets = { 'set_bin': 'cb', 'set_window': 'cw', 'set_refractory_period': 'cr', } def __init__(self, correlograms=None, firing_rate=None, sample_rate=None, **kwargs): super(CorrelogramView, self).__init__(**kwargs) self.state_attrs += ('bin_size', 'window_size', 'refractory_period', 'uniform_normalization') self.local_state_attrs += () self.canvas.set_layout(layout='grid') # Outside margin to show labels. self.canvas.gpu_transforms.add(Scale(.9)) assert sample_rate > 0 self.sample_rate = float(sample_rate) # Function clusters => CCGs. self.correlograms = correlograms # Function clusters => firing rates (same unit as CCG). self.firing_rate = firing_rate # Set the default bin and window size. self._set_bin_window(bin_size=self.bin_size, window_size=self.window_size) self.correlogram_visual = HistogramVisual() self.canvas.add_visual(self.correlogram_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) self.text_visual = TextVisual(color=(1., 1., 1., 1.)) self.canvas.add_visual(self.text_visual) # ------------------------------------------------------------------------- # Internal methods # ------------------------------------------------------------------------- def _iter_subplots(self, n_clusters): for i in range(n_clusters): for j in range(n_clusters): yield i, j def get_clusters_data(self, load_all=None): ccg = self.correlograms(self.cluster_ids, self.bin_size, self.window_size) fr = self.firing_rate(self.cluster_ids, self.bin_size) if self.firing_rate else None assert ccg.ndim == 3 n_bins = ccg.shape[2] bunchs = [] m = ccg.max() for i, j in self._iter_subplots(len(self.cluster_ids)): b = Bunch() b.correlogram = ccg[i, j, :] if not self.uniform_normalization: # Normalization row per row. m = ccg[i, j, :].max() b.firing_rate = fr[i, j] if fr is not None else None b.data_bounds = (0, 0, n_bins, m) b.pair_index = i, j b.color = selected_cluster_color(i, 1) if i != j: b.color = add_alpha(_override_hsv(b.color[:3], s=.1, v=1)) bunchs.append(b) return bunchs def _plot_pair(self, bunch): # Plot the histogram. self.correlogram_visual.add_batch_data(hist=bunch.correlogram, color=bunch.color, ylim=bunch.data_bounds[3], box_index=bunch.pair_index) # Plot the firing rate. gray = (.25, .25, .25, 1.) if bunch.firing_rate is not None: # Line. pos = np.array([[ 0, bunch.firing_rate, bunch.data_bounds[2], bunch.firing_rate ]]) self.line_visual.add_batch_data(pos=pos, color=gray, data_bounds=bunch.data_bounds, box_index=bunch.pair_index) # # Text. # self.text_visual.add_batch_data( # pos=[bunch.data_bounds[2], bunch.firing_rate], # text='%.2f' % bunch.firing_rate, # anchor=(-1, 0), # box_index=bunch.pair_index, # data_bounds=bunch.data_bounds, # ) # Refractory period. xrp0 = round( (self.window_size * .5 - self.refractory_period) / self.bin_size) xrp1 = round((self.window_size * .5 + self.refractory_period) / self.bin_size) + 1 ylim = bunch.data_bounds[3] pos = np.array([[xrp0, 0, xrp0, ylim], [xrp1, 0, xrp1, ylim]]) self.line_visual.add_batch_data(pos=pos, color=gray, data_bounds=bunch.data_bounds, box_index=bunch.pair_index) def _plot_labels(self): n = len(self.cluster_ids) # Display the cluster ids in the subplots. for k in range(n): self.text_visual.add_batch_data( pos=[-1, 0], text=str(self.cluster_ids[k]), anchor=[-1.25, 0], data_bounds=None, box_index=(k, 0), ) self.text_visual.add_batch_data( pos=[0, -1], text=str(self.cluster_ids[k]), anchor=[0, -1.25], data_bounds=None, box_index=(n - 1, k), ) # # Display the window size in the bottom right subplot. # self.text_visual.add_batch_data( # pos=[1, -1], # anchor=[1.25, 1], # text='%.1f ms' % (1000 * .5 * self.window_size), # box_index=(n - 1, n - 1), # ) def plot(self, **kwargs): """Update the view with the current cluster selection.""" self.canvas.grid.shape = (len(self.cluster_ids), len(self.cluster_ids)) bunchs = self.get_clusters_data() self.correlogram_visual.reset_batch() self.line_visual.reset_batch() self.text_visual.reset_batch() for bunch in bunchs: self._plot_pair(bunch) self._plot_labels() self.canvas.update_visual(self.correlogram_visual) self.canvas.update_visual(self.line_visual) self.canvas.update_visual(self.text_visual) self.canvas.update() # ------------------------------------------------------------------------- # Public methods # ------------------------------------------------------------------------- def toggle_normalization(self, checked): """Change the normalization of the correlograms.""" self.uniform_normalization = checked self.plot() def toggle_labels(self, checked): """Show or hide all labels.""" if checked: self.text_visual.show() else: self.text_visual.hide() self.canvas.update() def attach(self, gui): """Attach the view to the GUI.""" super(CorrelogramView, self).attach(gui) self.actions.add(self.toggle_normalization, shortcut='n', checkable=True) self.actions.add(self.toggle_labels, checkable=True, checked=True) self.actions.separator() self.actions.add(self.set_bin, prompt=True, prompt_default=lambda: self.bin_size * 1000) self.actions.add(self.set_window, prompt=True, prompt_default=lambda: self.window_size * 1000) self.actions.add(self.set_refractory_period, prompt=True, prompt_default=lambda: self.refractory_period * 1000) self.actions.separator() # ------------------------------------------------------------------------- # Methods for changing the parameters # ------------------------------------------------------------------------- def _set_bin_window(self, bin_size=None, window_size=None): """Set the bin and window sizes (in seconds).""" bin_size = bin_size or self.bin_size window_size = window_size or self.window_size bin_size = _clip(bin_size, 1e-6, 1e3) window_size = _clip(window_size, 1e-6, 1e3) assert 1e-6 <= bin_size <= 1e3 assert 1e-6 <= window_size <= 1e3 assert bin_size < window_size self.bin_size = bin_size self.window_size = window_size self.update_status() @property def status(self): b, w = self.bin_size * 1000, self.window_size * 1000 return '{:.1f} ms ({:.1f} ms)'.format(w, b) def set_refractory_period(self, value): """Set the refractory period (in milliseconds).""" self.refractory_period = _clip(value, .1, 100) * 1e-3 self.plot() def set_bin(self, bin_size): """Set the correlogram bin size (in milliseconds). Example: `1` """ self._set_bin_window(bin_size=bin_size * 1e-3) self.plot() def set_window(self, window_size): """Set the correlogram window size (in milliseconds). Example: `100` """ self._set_bin_window(window_size=window_size * 1e-3) self.plot() def increase(self): """Increase the window size.""" self.set_window(1000 * self.window_size * 1.1) def decrease(self): """Decrease the window size.""" self.set_window(1000 * self.window_size / 1.1) def on_mouse_wheel(self, e): # pragma: no cover """Change the scaling with the wheel.""" super(CorrelogramView, self).on_mouse_wheel(e) if e.modifiers == ('Alt', ): self._set_bin_window(bin_size=self.bin_size * 1.1**e.delta) self.plot()
class FeatureView(MarkerSizeMixin, ScalingMixin, ManualClusteringView): """This view displays a 4x4 subplot matrix with different projections of the principal component features. This view keeps track of which channels are currently shown. Constructor ----------- features : function Maps `(cluster_id, channel_ids=None, load_all=False)` to `Bunch(data, channel_ids, channel_labels, spike_ids , masks)`. * `data` is an `(n_spikes, n_channels, n_features)` array * `channel_ids` contains the channel ids of every row in `data` * `channel_labels` contains the channel labels of every row in `data` * `spike_ids` is a `(n_spikes,)` array * `masks` is an `(n_spikes, n_channels)` array This allows for a sparse format. attributes : dict Maps an attribute name to a 1D array with `n_spikes` numbers (for example, spike times). """ # Do not show too many clusters. max_n_clusters = 8 _default_position = 'right' cluster_ids = () # Whether to disable automatic selection of channels. fixed_channels = False feature_scaling = 1. default_shortcuts = { 'change_marker_size': 'alt+wheel', 'increase': 'ctrl++', 'decrease': 'ctrl+-', 'add_lasso_point': 'ctrl+click', 'stop_lasso': 'ctrl+right click', 'toggle_automatic_channel_selection': 'c', } def __init__(self, features=None, attributes=None, **kwargs): super(FeatureView, self).__init__(**kwargs) self.state_attrs += ('fixed_channels', 'feature_scaling') assert features self.features = features self._lim = 1 self.grid_dim = _get_default_grid() # 2D array where every item a string like `0A,1B` self.n_rows, self.n_cols = np.array(self.grid_dim).shape self.canvas.set_layout('grid', shape=(self.n_rows, self.n_cols)) self.canvas.enable_lasso() # Channels being shown. self.channel_ids = None # Attributes: extra features. This is a dictionary # {name: array} # where each array is a `(n_spikes,)` array. self.attributes = attributes or {} self.visual = ScatterVisual() self.canvas.add_visual(self.visual) self.text_visual = TextVisual() self.canvas.add_visual(self.text_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) def set_grid_dim(self, grid_dim): """Change the grid dim dynamically. Parameters ---------- grid_dim : array-like (2D) `grid_dim[row, col]` is a string with two values separated by a comma. Each value is the relative channel id (0, 1, 2...) followed by the PC (A, B, C...). For example, `grid_dim[row, col] = 0B,1A`. Each value can also be an attribute name, for example `time`. For example, `grid_dim[row, col] = time,2C`. """ self.grid_dim = grid_dim self.n_rows, self.n_cols = np.array(grid_dim).shape self.canvas.grid.shape = (self.n_rows, self.n_cols) # Internal methods # ------------------------------------------------------------------------- def _iter_subplots(self): """Yield (i, j, dim).""" for i in range(self.n_rows): for j in range(self.n_cols): dim = self.grid_dim[i][j] dim_x, dim_y = dim.split(',') yield i, j, dim_x, dim_y def _get_axis_label(self, dim): """Return the channel label from a dimension, if applicable.""" if str(dim[:-1]).isdecimal(): n = len(self.channel_ids) channel_id = self.channel_ids[int(dim[:-1]) % n] return self.channel_labels[channel_id] + dim[-1] else: return dim def _get_channel_and_pc(self, dim): """Return the channel_id and PC of a dim.""" if self.channel_ids is None: return assert dim not in self.attributes # This is called only on PC data. s = 'ABCDEFGHIJ' # Channel relative index, typically just 0 or 1. c_rel = int(dim[:-1]) # Get the channel_id from the currently-selected channels. channel_id = self.channel_ids[c_rel % len(self.channel_ids)] pc = s.index(dim[-1]) return channel_id, pc def _get_axis_data(self, bunch, dim, cluster_id=None, load_all=None): """Extract the points from the data on a given dimension. bunch is returned by the features() function. dim is the string specifying the dimensions to extract for the data. """ if dim in self.attributes: return self.attributes[dim](cluster_id, load_all=load_all) masks = bunch.get('masks', None) channel_id, pc = self._get_channel_and_pc(dim) # Skip the plot if the channel id is not displayed. if channel_id not in bunch.channel_ids: # pragma: no cover return Bunch(data=np.zeros((bunch.data.shape[0],))) # Get the column index of the current channel in data. c = list(bunch.channel_ids).index(channel_id) if masks is not None: masks = masks[:, c] return Bunch(data=self.feature_scaling * bunch.data[:, c, pc], masks=masks) def _get_axis_bounds(self, dim, bunch): """Return the min/max of an axis.""" if dim in self.attributes: # Attribute: specified lim, or compute the min/max. vmin, vmax = bunch.get('lim', (0, 0)) assert vmin is not None assert vmax is not None return vmin, vmax return (-self._lim, +self._lim) def _plot_points(self, bunch, clu_idx=None): if not bunch: return cluster_id = self.cluster_ids[clu_idx] if clu_idx is not None else None for i, j, dim_x, dim_y in self._iter_subplots(): px = self._get_axis_data(bunch, dim_x, cluster_id=cluster_id) py = self._get_axis_data(bunch, dim_y, cluster_id=cluster_id) # Skip empty data. if px is None or py is None: # pragma: no cover logger.warning("Skipping empty data for cluster %d.", cluster_id) return assert px.data.shape == py.data.shape xmin, xmax = self._get_axis_bounds(dim_x, px) ymin, ymax = self._get_axis_bounds(dim_y, py) assert xmin <= xmax assert ymin <= ymax data_bounds = (xmin, ymin, xmax, ymax) masks = _get_masks_max(px, py) # Prepare the batch visual with all subplots # for the selected cluster. self.visual.add_batch_data( x=px.data, y=py.data, color=_get_point_color(clu_idx), # Reduced marker size for background features size=self._marker_size, masks=_get_point_masks(clu_idx=clu_idx, masks=masks), data_bounds=data_bounds, box_index=(i, j), ) # Get the channel ids corresponding to the relative channel indices # specified in the dimensions. Channel 0 corresponds to the first # best channel for the selected cluster, and so on. label_x = self._get_axis_label(dim_x) label_y = self._get_axis_label(dim_y) # Add labels. self.text_visual.add_batch_data( pos=[1, 1], anchor=[-1, -1], text=label_y, data_bounds=None, box_index=(i, j), ) self.text_visual.add_batch_data( pos=[0, -1.], anchor=[0, 1], text=label_x, data_bounds=None, box_index=(i, j), ) def _plot_axes(self): self.line_visual.reset_batch() for i, j, dim_x, dim_y in self._iter_subplots(): self.line_visual.add_batch_data( pos=[[-1., 0., +1., 0.], [0., -1., 0., +1.]], color=(.5, .5, .5, .5), box_index=(i, j), data_bounds=None, ) self.canvas.update_visual(self.line_visual) def _get_lim(self, bunchs): if not bunchs: # pragma: no cover return 1 m, M = min(bunch.data.min() for bunch in bunchs), max(bunch.data.max() for bunch in bunchs) M = max(abs(m), abs(M)) return M def _get_scaling_value(self): return self.feature_scaling def _set_scaling_value(self, value): self.feature_scaling = value self.plot(fixed_channels=True) # Public methods # ------------------------------------------------------------------------- def clear_channels(self): """Reset the current channels.""" self.channel_ids = None self.plot() def get_clusters_data(self, fixed_channels=None, load_all=None): # Get the feature data. # Specify the channel ids if these are fixed, otherwise # choose the first cluster's best channels. c = self.channel_ids if fixed_channels else None bunchs = [self.features(cluster_id, channel_ids=c) for cluster_id in self.cluster_ids] bunchs = [b for b in bunchs if b] if not bunchs: # pragma: no cover return [] for cluster_id, bunch in zip(self.cluster_ids, bunchs): bunch.cluster_id = cluster_id # Choose the channels based on the first selected cluster. channel_ids = list(bunchs[0].get('channel_ids', [])) if bunchs else [] common_channels = list(channel_ids) # Intersection (with order kept) of channels belonging to all clusters. for bunch in bunchs: common_channels = [c for c in bunch.get('channel_ids', []) if c in common_channels] # The selected channels will be (1) the channels common to all clusters, followed # by (2) remaining channels from the first cluster (excluding those already selected # in (1)). n = len(channel_ids) not_common_channels = [c for c in channel_ids if c not in common_channels] channel_ids = common_channels + not_common_channels[:n - len(common_channels)] assert len(channel_ids) > 0 # Choose the channels automatically unless fixed_channels is set. if (not fixed_channels or self.channel_ids is None): self.channel_ids = channel_ids assert len(self.channel_ids) # Channel labels. self.channel_labels = {} for d in bunchs: chl = d.get('channel_labels', ['%d' % ch for ch in d.get('channel_ids', [])]) self.channel_labels.update({ channel_id: chl[i] for i, channel_id in enumerate(d.get('channel_ids', []))}) return bunchs def plot(self, **kwargs): """Update the view with the selected clusters.""" # Determine whether the channels should be fixed or not. added = kwargs.get('up', {}).get('added', None) # Fix the channels if the view updates after a cluster event # and there are new clusters. fixed_channels = ( self.fixed_channels or kwargs.get('fixed_channels', None) or added is not None) # Get the clusters data. bunchs = self.get_clusters_data(fixed_channels=fixed_channels) bunchs = [b for b in bunchs if b] if not bunchs: return self._lim = self._get_lim(bunchs) # Get the background data. background = self.features(channel_ids=self.channel_ids) # Plot all features. self._plot_axes() # NOTE: the columns in bunch.data are ordered by decreasing quality # of the associated channels. The channels corresponding to each # column are given in bunch.channel_ids in the same order. # Plot points. self.visual.reset_batch() self.text_visual.reset_batch() self._plot_points(background) # background spikes # Plot each cluster. for clu_idx, bunch in enumerate(bunchs): self._plot_points(bunch, clu_idx=clu_idx) # Upload the data on the GPU. self.canvas.update_visual(self.visual) self.canvas.update_visual(self.text_visual) self.canvas.update() def attach(self, gui): """Attach the view to the GUI.""" super(FeatureView, self).attach(gui) self.actions.add( self.toggle_automatic_channel_selection, checked=not self.fixed_channels, checkable=True) self.actions.add(self.clear_channels) self.actions.separator() def toggle_automatic_channel_selection(self, checked): """Toggle the automatic selection of channels when the cluster selection changes.""" self.fixed_channels = not checked @property def status(self): if self.channel_ids is None: # pragma: no cover return '' channel_labels = [self.channel_labels[ch] for ch in self.channel_ids[:2]] return 'channels: %s' % ', '.join(channel_labels) # Dimension selection # ------------------------------------------------------------------------- def on_select_channel(self, sender=None, channel_id=None, key=None, button=None): """Respond to the click on a channel from another view, and update the relevant subplots.""" channels = self.channel_ids if channels is None: return if len(channels) == 1: self.plot() return assert len(channels) >= 2 # Get the axis from the pressed button (1, 2, etc.) if key is not None: d = np.clip(len(channels) - 1, 0, key - 1) else: d = 0 if button == 'Left' else 1 # Change the first or second best channel. old = channels[d] # Avoid updating the view if the channel doesn't change. if channel_id == old: return channels[d] = channel_id # Ensure that the first two channels are different. if channels[1 - min(d, 1)] == channel_id: channels[1 - min(d, 1)] = old assert channels[0] != channels[1] # Remove duplicate channels. self.channel_ids = _uniq(channels) logger.debug("Choose channels %d and %d in feature view.", *channels[:2]) # Fix the channels temporarily. self.plot(fixed_channels=True) self.update_status() def on_mouse_click(self, e): """Select a feature dimension by clicking on a box in the feature view.""" b = e.button if 'Alt' in e.modifiers: # Get mouse position in NDC. (i, j), _ = self.canvas.grid.box_map(e.pos) dim = self.grid_dim[i][j] dim_x, dim_y = dim.split(',') dim = dim_x if b == 'Left' else dim_y other_dim = dim_y if b == 'Left' else dim_x if dim not in self.attributes: # When a regular (channel, PC) dimension is selected. channel_pc = self._get_channel_and_pc(dim) if channel_pc is None: return channel_id, pc = channel_pc logger.debug("Click on feature dim %s, channel id %s, PC %s.", dim, channel_id, pc) else: # When the selected dimension is an attribute, e.g. "time". pc = None # Take the channel id in the other dimension. channel_pc = self._get_channel_and_pc(other_dim) channel_id = channel_pc[0] if channel_pc is not None else None logger.debug("Click on feature dim %s.", dim) emit('select_feature', self, dim=dim, channel_id=channel_id, pc=pc) def on_request_split(self, sender=None): """Return the spikes enclosed by the lasso.""" if (self.canvas.lasso.count < 3 or not len(self.cluster_ids)): # pragma: no cover return np.array([], dtype=np.int64) assert len(self.channel_ids) # Get the dimensions of the lassoed subplot. i, j = self.canvas.layout.active_box dim = self.grid_dim[i][j] dim_x, dim_y = dim.split(',') # Get all points from all clusters. pos = [] spike_ids = [] for cluster_id in self.cluster_ids: # Load all spikes. bunch = self.features(cluster_id, channel_ids=self.channel_ids, load_all=True) if not bunch: continue px = self._get_axis_data(bunch, dim_x, cluster_id=cluster_id, load_all=True) py = self._get_axis_data(bunch, dim_y, cluster_id=cluster_id, load_all=True) points = np.c_[px.data, py.data] # Normalize the points. xmin, xmax = self._get_axis_bounds(dim_x, px) ymin, ymax = self._get_axis_bounds(dim_y, py) r = Range((xmin, ymin, xmax, ymax)) points = r.apply(points) pos.append(points) spike_ids.append(bunch.spike_ids) pos = np.vstack(pos) spike_ids = np.concatenate(spike_ids) # Find lassoed spikes. ind = self.canvas.lasso.in_polygon(pos) self.canvas.lasso.clear() return np.unique(spike_ids[ind])
def on_view_attached(view, gui): if isinstance(view, AmplitudeView): # Create batch of vertical lines (full height) self.line_visual = LineVisual() _fix_coordinate_in_visual(self.line_visual, 'y') view.canvas.add_visual(self.line_visual) # Create batch of annotative text self.text_visual = TextVisual(self.line_color) _fix_coordinate_in_visual(self.text_visual, 'y') self.text_visual.inserter.insert_vert( 'gl_Position.x += 0.001;', 'after_transforms') view.canvas.add_visual(self.text_visual) @view.actions.add(shortcut='alt+b', checkable=True, name='Toggle event markers') def toggle(on): """Toggle event markers""" # Use `show` and `hide` instead of `toggle` here in # case synchronization issues if on: logger.debug('Toggle on markers.') self.line_visual.show() self.text_visual.show() view.show_events = True else: logger.debug('Toggle off markers.') self.line_visual.hide() self.text_visual.hide() view.show_events = False view.canvas.update() @view.actions.add(shortcut='shift+alt+e', prompt=True, name='Go to event', alias='ge') def Go_to_event(event_num): trace_view = gui.get_view(TraceView) if 0 < event_num <= events.size: trace_view.go_to(events[event_num - 1]) # Disable the menu until events are successfully added view.actions.disable('Go to event') view.actions.disable('Toggle event markers') if not hasattr(view, 'show_events'): view.show_events = True view.state_attrs += ('show_events', ) # Read event markers from file filename = controller.dir_path / 'eventmarkers.txt' try: events = np.genfromtxt(filename, usecols=0, dtype=None) except (FileNotFoundError, OSError): logger.warn('Event marker file not found: `%s`.', filename) view.show_events = False return # Create list of event names labels = list(map(str, range(1, events.size + 1))) # Read event names from file (if present) filename = controller.dir_path / 'eventmarkernames.txt' try: eventnames = np.loadtxt(filename, usecols=0, dtype=str, max_rows=events.size) labels[:eventnames.size] = np.atleast_1d(eventnames) except (FileNotFoundError, OSError): logger.info( 'Event marker names file not found (optional):' ' `%s`. Fall back to numbering.', filename) # Obtain seconds from samples if events.dtype == int: logger.debug('Converting input from samples to seconds.') events = events / controller.model.sample_rate logger.debug('Add event markers to amplitude view.') # Obtain horizontal positions x = -1 + 2 * events / view.duration x = x.repeat(4, 0).reshape(-1, 4) x[:, 1::2] = 1, -1 # Add lines and update view self.line_visual.reset_batch() self.line_visual.add_batch_data(pos=x, color=self.line_color) view.canvas.update_visual(self.line_visual) # Add text and update view self.text_visual.reset_batch() self.text_visual.add_batch_data(pos=x[:, :2], anchor=(1, -1), text=labels) view.canvas.update_visual(self.text_visual) # Finally enable the menu logger.debug('Enable menu items.') view.actions.enable('Go to event') view.actions.enable('Toggle event markers') if view.show_events: view.actions.get('Toggle event markers').toggle() else: self.line_visual.hide() self.text_visual.hide()
def __init__(self, amplitudes=None, amplitudes_type=None, duration=None, path=None,sample_rate=None): super(AmplitudeView, self).__init__() self.state_attrs += ('amplitudes_type',) self.canvas.enable_axes() self.canvas.enable_lasso() # Ensure amplitudes is a dictionary, even if there is a single amplitude. if not isinstance(amplitudes, dict): amplitudes = {'amplitude': amplitudes} assert amplitudes self.amplitudes = amplitudes # Rotating property amplitudes types. self.amplitudes_types = RotatingProperty() for name, value in self.amplitudes.items(): self.amplitudes_types.add(name, value) # Current amplitudes type. self.amplitudes_types.set(amplitudes_type) assert self.amplitudes_type in self.amplitudes self.show_background_clusters=True self.cluster_ids = () self.duration = duration or 1. # Histogram visual. self.hist_visual = HistogramVisual() self.hist_visual.transforms.add([ Range(NDC, (-1, -1, 1, -1 + 2 * self.histogram_scale)), Rotate('cw'), Scale((1, -1)), Translate((2.05, 0)), ]) self.canvas.add_visual(self.hist_visual) self.canvas.panzoom.zoom = self.canvas.panzoom._default_zoom = (.75, 1) self.canvas.panzoom.pan = self.canvas.panzoom._default_pan = (-.25, 0) # Yellow vertical bar showing the selected time interval. self.patch_visual = PatchVisual(primitive_type='triangle_fan') self.patch_visual.inserter.insert_vert(''' const float MIN_INTERVAL_SIZE = 0.01; uniform float u_interval_size; ''', 'header') self.patch_visual.inserter.insert_vert(''' gl_Position.y = pos_orig.y; // The following is used to ensure that (1) the bar width increases with the zoom level // but also (2) there is a minimum absolute width so that the bar remains visible // at low zoom levels. float w = max(MIN_INTERVAL_SIZE, u_interval_size * u_zoom.x); // HACK: the z coordinate is used to store 0 or 1, depending on whether the current // vertex is on the left or right edge of the bar. gl_Position.x += w * (-1 + 2 * int(a_position.z == 0)); ''', 'after_transforms') self.canvas.add_visual(self.patch_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) blocksizes_path=op.join(path,'blocksizes.npy') if op.exists(blocksizes_path): self.blocksizes=np.load(blocksizes_path)[0] self.blockstarts=np.load(op.join(path,'blockstarts.npy'))[0] self.blocksizes_time=self.blocksizes/sample_rate self.blockstarts_time=self.blockstarts/sample_rate self.gap=np.diff(self.blockstarts)-self.blocksizes[:-1] self.gap_time=np.diff(self.blockstarts_time)-self.blocksizes_time[:-1] self.show_block_gap=False self.show_block_lines=True else: self.show_block_gap=False self.show_block_lines=False # Scatter plot. self.visual = ScatterVisual() self.canvas.add_visual(self.visual) self.canvas.panzoom.set_constrain_bounds((-2, -2, +2, +2))
class AmplitudeView(MarkerSizeMixin, LassoMixin, ManualClusteringView): """This view displays an amplitude plot for all selected clusters. Constructor ----------- amplitudes : dict Dictionary `{amplitudes_type: function}`, for different types of amplitudes. Each function maps `cluster_ids` to a list `[Bunch(amplitudes, spike_ids, spike_times), ...]` for each cluster. Use `cluster_id=None` for background amplitudes. """ # Do not show too many clusters. max_n_clusters = 8 _default_position = 'right' # Alpha channel of the markers in the scatter plot. marker_alpha = 1. time_range_color = (1., 1., 0., .25) # Number of bins in the histogram. n_bins = 100 # Alpha channel of the histogram in the background. histogram_alpha = .5 # Quantile used for scaling of the amplitudes (less than 1 to avoid outliers). quantile = .99 # Size of the histogram, between 0 and 1. histogram_scale = .25 default_shortcuts = { 'change_marker_size': 'alt+wheel', 'next_amplitudes_type': 'a', 'toggle_other_clusters': 'shift+a', 'select_x_dim': 'shift+left click', 'select_y_dim': 'shift+right click', 'select_time': 'alt+click', } def __init__(self, amplitudes=None, amplitudes_type=None, duration=None, path=None,sample_rate=None): super(AmplitudeView, self).__init__() self.state_attrs += ('amplitudes_type',) self.canvas.enable_axes() self.canvas.enable_lasso() # Ensure amplitudes is a dictionary, even if there is a single amplitude. if not isinstance(amplitudes, dict): amplitudes = {'amplitude': amplitudes} assert amplitudes self.amplitudes = amplitudes # Rotating property amplitudes types. self.amplitudes_types = RotatingProperty() for name, value in self.amplitudes.items(): self.amplitudes_types.add(name, value) # Current amplitudes type. self.amplitudes_types.set(amplitudes_type) assert self.amplitudes_type in self.amplitudes self.show_background_clusters=True self.cluster_ids = () self.duration = duration or 1. # Histogram visual. self.hist_visual = HistogramVisual() self.hist_visual.transforms.add([ Range(NDC, (-1, -1, 1, -1 + 2 * self.histogram_scale)), Rotate('cw'), Scale((1, -1)), Translate((2.05, 0)), ]) self.canvas.add_visual(self.hist_visual) self.canvas.panzoom.zoom = self.canvas.panzoom._default_zoom = (.75, 1) self.canvas.panzoom.pan = self.canvas.panzoom._default_pan = (-.25, 0) # Yellow vertical bar showing the selected time interval. self.patch_visual = PatchVisual(primitive_type='triangle_fan') self.patch_visual.inserter.insert_vert(''' const float MIN_INTERVAL_SIZE = 0.01; uniform float u_interval_size; ''', 'header') self.patch_visual.inserter.insert_vert(''' gl_Position.y = pos_orig.y; // The following is used to ensure that (1) the bar width increases with the zoom level // but also (2) there is a minimum absolute width so that the bar remains visible // at low zoom levels. float w = max(MIN_INTERVAL_SIZE, u_interval_size * u_zoom.x); // HACK: the z coordinate is used to store 0 or 1, depending on whether the current // vertex is on the left or right edge of the bar. gl_Position.x += w * (-1 + 2 * int(a_position.z == 0)); ''', 'after_transforms') self.canvas.add_visual(self.patch_visual) self.line_visual = LineVisual() self.canvas.add_visual(self.line_visual) blocksizes_path=op.join(path,'blocksizes.npy') if op.exists(blocksizes_path): self.blocksizes=np.load(blocksizes_path)[0] self.blockstarts=np.load(op.join(path,'blockstarts.npy'))[0] self.blocksizes_time=self.blocksizes/sample_rate self.blockstarts_time=self.blockstarts/sample_rate self.gap=np.diff(self.blockstarts)-self.blocksizes[:-1] self.gap_time=np.diff(self.blockstarts_time)-self.blocksizes_time[:-1] self.show_block_gap=False self.show_block_lines=True else: self.show_block_gap=False self.show_block_lines=False # Scatter plot. self.visual = ScatterVisual() self.canvas.add_visual(self.visual) self.canvas.panzoom.set_constrain_bounds((-2, -2, +2, +2)) def _get_data_bounds(self, bunchs): """Compute the data bounds.""" if not bunchs: # pragma: no cover return (0, 0, self.duration, 1) m = min( np.quantile(bunch.amplitudes, 1 - self.quantile) for bunch in bunchs if len(bunch.amplitudes)) m = min(0, m) # ensure ymin <= 0 M = max( np.quantile(bunch.amplitudes, self.quantile) for bunch in bunchs if len(bunch.amplitudes)) return (0, m, self.duration, M) def _add_histograms(self, bunchs): # We do this after get_clusters_data because we need x_max. for bunch in bunchs: bunch.histogram = _compute_histogram( bunch.amplitudes, x_min=self.data_bounds[1], x_max=self.data_bounds[3], n_bins=self.n_bins, normalize=True, ignore_zeros=True, ) return bunchs def show_time_range(self, interval=(0, 0)): start, end = interval x0 = -1 + 2 * (start / self.duration) x1 = -1 + 2 * (end / self.duration) xm = .5 * (x0 + x1) pos = np.array([ [xm, -1], [xm, +1], [xm, +1], [xm, -1], ]) self.patch_visual.program['u_interval_size'] = .5 * (x1 - x0) self.patch_visual.set_data(pos=pos, color=self.time_range_color, depth=[0, 0, 1, 1]) self.canvas.update() def _plot_cluster(self, bunch): """Make the scatter plot.""" ms = self._marker_size if not len(bunch.histogram): return # Histogram in the background. self.hist_visual.add_batch_data( hist=bunch.histogram, ylim=self._ylim, color=add_alpha(bunch.color, self.histogram_alpha)) # Scatter plot. self.visual.add_batch_data( pos=bunch.pos, color=bunch.color, size=ms, data_bounds=self.data_bounds) def get_clusters_data(self, load_all=None): """Return a list of Bunch instances, with attributes pos and spike_ids.""" if not len(self.cluster_ids): return cluster_ids = list(self.cluster_ids) # Don't need the background when splitting. if not load_all and self.show_background_clusters: # Add None cluster which means background spikes. cluster_ids = [None] + cluster_ids color_ind_offset = -1 else: color_ind_offset=0 bunchs = self.amplitudes[self.amplitudes_type](cluster_ids, load_all=load_all) or () # Add a pos attribute in bunchs in addition to x and y. for i, (cluster_id, bunch) in enumerate(zip(cluster_ids, bunchs)): spike_ids = _as_array(bunch.spike_ids) spike_times = _as_array(bunch.spike_times) amplitudes = _as_array(bunch.amplitudes) assert spike_ids.shape == spike_times.shape == amplitudes.shape # Ensure that bunch.pos exists, as it used by the LassoMixin. bunch.pos = np.c_[spike_times, amplitudes] assert bunch.pos.ndim == 2 bunch.cluster_id = cluster_id bunch.color = ( selected_cluster_color(i + color_ind_offset, self.marker_alpha) # Background amplitude color. if cluster_id is not None else (.5, .5, .5, .5)) return bunchs def plot(self, **kwargs): """Update the view with the current cluster selection.""" bunchs = self.get_clusters_data(**kwargs) if not bunchs: return self.data_bounds = self._get_data_bounds(bunchs) bunchs = self._add_histograms(bunchs) # Use the same scale for all histograms. self._ylim = max(bunch.histogram.max() for bunch in bunchs) if bunchs else 1. self.visual.reset_batch() self.hist_visual.reset_batch() for bunch in bunchs: self._plot_cluster(bunch) self.canvas.update_visual(self.visual) self.canvas.update_visual(self.hist_visual) if self.show_block_lines: line_times = self.blocksizes_time[:-1].cumsum() line_times=np.append(line_times,[0,self.data_bounds[2]]) line_points=[] for time in line_times: line_points.append(np.array([time, self.data_bounds[1], time, self.data_bounds[3]])) pos = np.array(line_points) self.line_visual.add_batch_data( pos=pos, color=(1, .5, 0, 1.), data_bounds=self.data_bounds) self.canvas.update_visual(self.line_visual) self._update_axes() self.canvas.update() self.update_status() def attach(self, gui): """Attach the view to the GUI.""" super(AmplitudeView, self).attach(gui) # Amplitude type actions. def _make_amplitude_action(a): def callback(): self.amplitudes_type = a self.plot() return callback for a in self.amplitudes_types.keys(): name = 'Change amplitudes type to %s' % a self.actions.add( _make_amplitude_action(a), show_shortcut=False, name=name, view_submenu='Change amplitudes type') self.actions.add(self.next_amplitudes_type, set_busy=True) self.actions.add(self.previous_amplitudes_type, set_busy=True) self.actions.add(self.toggle_other_clusters, set_busy=True) @property def status(self): return self.amplitudes_type @property def amplitudes_type(self): return self.amplitudes_types.current @amplitudes_type.setter def amplitudes_type(self, value): self.amplitudes_types.set(value) def next_amplitudes_type(self): """Switch to the next amplitudes type.""" self.amplitudes_types.next() logger.debug("Switch to amplitudes type: %s.", self.amplitudes_types.current) self.plot() def toggle_other_clusters(self): self.show_background_clusters = not self.show_background_clusters print(self.show_background_clusters) self.plot() def previous_amplitudes_type(self): """Switch to the previous amplitudes type.""" self.amplitudes_types.previous() logger.debug("Switch to amplitudes type: %s.", self.amplitudes_types.current) self.plot() def on_mouse_click(self, e): """Select a time from the amplitude view to display in the trace view.""" # from pdb import set_trace # set_trace() if 'Shift' in e.modifiers: mouse_pos = self.canvas.panzoom.window_to_ndc(e.pos) time = Range(NDC, self.data_bounds).apply(mouse_pos)[0][0] emit('select_time', self, time)