def _compute_correlograms(self, cluster_ids): # Keep spikes belonging to the selected clusters. ind = np.in1d(self.spike_clusters, cluster_ids) st = self.spike_times[ind] sc = self.spike_clusters[ind] # Take excerpts of the spikes. n_spikes_total = len(st) st = get_excerpts(st, excerpt_size=self.excerpt_size, n_excerpts=self.n_excerpts) sc = get_excerpts(sc, excerpt_size=self.excerpt_size, n_excerpts=self.n_excerpts) n_spikes_exerpts = len(st) logger.log( 5, "Computing correlograms for clusters %s (%d/%d spikes).", ', '.join(map(str, cluster_ids)), n_spikes_exerpts, n_spikes_total, ) # Compute all pairwise correlograms. ccg = correlograms( st, sc, cluster_ids=cluster_ids, sample_rate=self.sample_rate, bin_size=self.bin_size, window_size=self.window_size, ) return ccg
def _compute_correlograms(self, cluster_ids): # Keep spikes belonging to the selected clusters. ind = np.in1d(self.spike_clusters, cluster_ids) st = self.spike_times[ind] sc = self.spike_clusters[ind] # Take excerpts of the spikes. n_spikes_total = len(st) st = get_excerpts(st, excerpt_size=self.excerpt_size, n_excerpts=self.n_excerpts) sc = get_excerpts(sc, excerpt_size=self.excerpt_size, n_excerpts=self.n_excerpts) n_spikes_exerpts = len(st) logger.log(5, "Computing correlograms for clusters %s (%d/%d spikes).", ', '.join(map(str, cluster_ids)), n_spikes_exerpts, n_spikes_total, ) # Compute all pairwise correlograms. ccg = correlograms(st, sc, cluster_ids=cluster_ids, sample_rate=self.sample_rate, bin_size=self.bin_size, window_size=self.window_size, ) return ccg
def _get_correlograms(self, cluster_ids, bin_size, window_size): spike_ids = self.selector.select_spikes(cluster_ids, 100000) st = self.model.spike_times[spike_ids] sc = self.supervisor.clustering.spike_clusters[spike_ids] return correlograms( st, sc, sample_rate=self.model.sample_rate, cluster_ids=cluster_ids, bin_size=bin_size, window_size=window_size, )