示例#1
0
def Picire(sut_call,
           sut_call_kwargs,
           listener,
           ident,
           issue,
           work_dir,
           parallel=False,
           combine_loops=False,
           split_method='zeller',
           subset_first=True,
           subset_iterator='forward',
           complement_iterator='forward',
           jobs=os.cpu_count(),
           max_utilization=100,
           encoding=None,
           atom='both',
           cache_class='ContentCache',
           cleanup=True,
           **kwargs):
    """
    Test case reducer based on the Picire Parallel Delta Debugging Framework.

    **Optional parameters of the reducer:**

      - ``parallel``, ``combine_loops``, ``split_method``, ``subset_first``,
        ``subset_iterator``, ``complement_iterator``, ``jobs``,
        ``max_utilization``, ``encoding``, ``atom``, ``cache_class``,
        ``cleanup``

    Refer to https://github.com/renatahodovan/picire for configuring Picire.

    Note: This reducer is capable of detecting new issues found during the test
    reduction (if any).

    **Example configuration snippet:**

        .. code-block:: ini

            [sut.foo]
            #call=...
            cost=1
            reduce=fuzzinator.reduce.Picire
            reduce_cost=4

            [sut.foo.reduce]
            parallel=True
            jobs=4
            subset_iterator=skip
    """
    def eval_arg(arg):
        return eval(arg) if isinstance(arg, str) else arg

    logging.getLogger('picire').setLevel(logger.level)

    src = issue['test']
    file_name = issue.get('filename', 'test')

    parallel = eval_arg(parallel)
    jobs = 1 if not parallel else eval_arg(jobs)
    encoding = encoding or chardet.detect(src)['encoding']
    cleanup = eval_arg(cleanup)

    combine_loops = eval_arg(combine_loops)
    subset_first = eval_arg(subset_first)
    max_utilization = eval_arg(max_utilization)

    split_method = getattr(picire.config_splitters, split_method)
    subset_iterator = getattr(picire.config_iterators, subset_iterator)
    complement_iterator = getattr(picire.config_iterators, complement_iterator)
    cache_class = getattr(picire, cache_class)
    if parallel:
        cache_class = picire.shared_cache_decorator(cache_class)

    # Choose the reducer class that will be used and its configuration.
    reduce_config = {'split': split_method}
    if not parallel:
        reduce_class = picire.LightDD
        reduce_config['subset_iterator'] = subset_iterator
        reduce_config['complement_iterator'] = complement_iterator
        reduce_config['subset_first'] = subset_first
    else:
        reduce_config['proc_num'] = jobs
        reduce_config['max_utilization'] = max_utilization

        if combine_loops:
            reduce_class = picire.CombinedParallelDD
            reduce_config['config_iterator'] = picire.CombinedIterator(
                subset_first, subset_iterator, complement_iterator)
        else:
            reduce_class = picire.ParallelDD
            reduce_config['subset_iterator'] = subset_iterator
            reduce_config['complement_iterator'] = complement_iterator
            reduce_config['subset_first'] = subset_first

    issues = dict()
    tester_config = dict(sut_call=sut_call,
                         sut_call_kwargs=sut_call_kwargs,
                         enc=encoding,
                         expected=issue['id'],
                         listener=listener,
                         ident=ident,
                         issues=issues)

    call_config = dict(reduce_class=reduce_class,
                       reduce_config=reduce_config,
                       tester_class=PicireTester,
                       tester_config=tester_config,
                       input=file_name,
                       src=src,
                       encoding=encoding,
                       out=work_dir,
                       atom=atom,
                       cache_class=cache_class,
                       cleanup=cleanup)

    try:
        reduced_file = picire.call(**call_config)
    except Exception as e:
        logger.warning('Exception in picire', exc_info=e)
        return None, list(issues.values())

    with open(reduced_file, 'rb') as f:
        src = f.read()

    return src, list(issues.values())
示例#2
0
def Picire(sut_call,
           sut_call_kwargs,
           listener,
           ident,
           issue,
           work_dir,
           parallel=False,
           combine_loops=False,
           split_method='zeller',
           subset_first=True,
           subset_iterator='forward',
           complement_iterator='forward',
           jobs=os.cpu_count(),
           max_utilization=100,
           encoding=None,
           atom='line',
           disable_cache=False,
           cleanup=True,
           **kwargs):
    """
    Test case reducer based on the Picire Parallel Delta Debugging Framework.

    Optional parameters of the reducer:
      - 'parallel', 'combine_loops', 'split_method', 'subset_first',
        'subset_iterator', 'complement_iterator', 'jobs', 'max_utilization',
        'encoding', 'atom', 'disable_cache', 'cleanup'
    Refer to https://github.com/renatahodovan/picire for configuring Picire.

    Note: This reducer is capable of detecting new issues found during the test
    reduction (if any).

    Example configuration snippet:
    [sut.foo]
    #call=...
    cost=1
    reduce=fuzzinator.reduce.Picire
    reduce_cost=4

    [sut.foo.reduce]
    parallel=True
    jobs=4
    subset_iterator=skip
    """
    def eval_arg(arg):
        return eval(arg) if isinstance(arg, str) else arg

    logging.getLogger('picire').setLevel(logger.level)

    src = issue['test']
    file_name = issue.get('filename', 'test')

    parallel = eval_arg(parallel)
    jobs = 1 if not parallel else eval_arg(jobs)
    disable_cache = eval_arg(disable_cache)
    encoding = encoding or chardet.detect(src)['encoding']
    cleanup = eval_arg(cleanup)

    combine_loops = eval_arg(combine_loops)
    subset_first = eval_arg(subset_first)
    max_utilization = eval_arg(max_utilization)

    split_method = getattr(picire.config_splitters, split_method)
    subset_iterator = getattr(picire.config_iterators, subset_iterator)
    complement_iterator = getattr(picire.config_iterators, complement_iterator)

    # Choose the reducer class that will be used and its configuration.
    reduce_config = {'split': split_method}
    if not parallel:
        reduce_class = picire.LightDD
        reduce_config['subset_iterator'] = subset_iterator
        reduce_config['complement_iterator'] = complement_iterator
        reduce_config['subset_first'] = subset_first
    else:
        reduce_config['proc_num'] = jobs
        reduce_config['max_utilization'] = max_utilization

        if combine_loops:
            reduce_class = picire.CombinedParallelDD
            reduce_config['config_iterator'] = picire.CombinedIterator(
                subset_first, subset_iterator, complement_iterator)
        else:
            reduce_class = picire.ParallelDD
            reduce_config['subset_iterator'] = subset_iterator
            reduce_config['complement_iterator'] = complement_iterator
            reduce_config['subset_first'] = subset_first

    issues = dict()
    tester_config = dict(sut_call=sut_call,
                         sut_call_kwargs=sut_call_kwargs,
                         enc=encoding,
                         expected=issue['id'],
                         listener=listener,
                         ident=ident,
                         issues=issues)

    call_config = dict(reduce_class=reduce_class,
                       reduce_config=reduce_config,
                       tester_class=PicireTester,
                       tester_config=tester_config,
                       input=file_name,
                       src=src,
                       encoding=encoding,
                       out=work_dir,
                       atom=atom,
                       parallel=parallel,
                       disable_cache=disable_cache,
                       cleanup=cleanup)

    try:
        reduced_file = picire.call(**call_config)
    except:
        return None, list(issues.values())

    # Reduce by char if we used line based reduce earlier.
    if atom == 'line':
        with open(reduced_file, 'rb') as f:
            src = f.read()

        call_config.update(dict(atom='char', src=src))
        try:
            reduced_file = picire.call(**call_config)
        except:
            return None, list(issues.values())

    with open(reduced_file, 'rb') as f:
        src = f.read()

    return src, list(issues.values())