def plot_CIR_edit_types(filename1, filename2, save=False): # Open the two dataframes df_1 = open_pickle("data/" + filename1) df_2 = open_pickle("data/" + filename2) # Add the edit type to the dataframes e_type_pf = [] e_type_pp = [] for _ in range(0, df_1.shape[0]): e_type_pf.append("pertubate_force") e_type_pp.append("pertubate_points") df_1.insert(1, "edit_type", e_type_pf, True) df_2.insert(1, "edit_type", e_type_pp, True) df = [df_1, df_2] df = pd.concat(df) optimal_solution_weight = 9.985281 ax = sns.lineplot(x="n", y="cost", hue="edit_type", data=df) ax.axhline(optimal_solution_weight, color="black", linestyle="dashed", alpha=0.8) ax.set(xlabel="n", ylabel="E") plt.tight_layout() if save: plt.savefig("figs/" + filename1 + "_" + filename2 + ".pdf") else: plt.show()
def clt(): k = open_pickle("data/clt") vals = np.split((np.asarray(k) / 10) * 16, 1000) # Take distribution of one sample ax = sns.distplot((np.asarray(vals[0]) / 10) * 16, label="mc") ax = ax.set(xlabel="area", ylabel="frequency") plt.show() # Take mean of all samples ax = sns.distplot(np.mean(vals, axis=1), label="mc") ax = ax.set(xlabel="area", ylabel="frequency") plt.show()
def plot_TSP_cs_temp(filename, save=False): df = open_pickle("data/" + filename + "_cooling_schedules") ax = sns.lineplot(x="n", y="temp", hue="cooling_schedule", ci=None, data=df) plt.tight_layout() if save: plt.savefig("figs/" + filename + "_cs_temp_lin.pdf") else: plt.show() plt.clf()
def plot_TSP_temp_temps(filename, save=False): df = open_pickle("data/" + filename + "_temps") sns.lineplot(x="n", y="temp", hue="init_temp", ci=None, data=df, palette=sns.color_palette('husl', n_colors=3)) plt.tight_layout() if save: plt.savefig("figs/" + filename + "_temp_temps.pdf") else: plt.show() plt.clf()
def plot_TSP_mcl(filename, save=False): df = open_pickle("data/" + filename + "_mcls") optimal_solution_weight = Network("routes/" + filename).optimal_solution_weight ax = sns.lineplot(x="n", y="cost", hue="l", data=df, palette=palette) ax.axhline(optimal_solution_weight, color="black", linestyle="dashed", alpha=0.8) plt.tight_layout() if save: plt.savefig("figs/" + filename + "_mcls.pdf") else: plt.show() plt.clf()
def plot_CIR_cs_weight(filename, save=False): df = open_pickle("data/" + filename + "_cooling_schedules") optimal_solution_weight = 9.985281 # From https://www.nrcresearchpress.com/doi/pdf/10.1139/v88-343 ax = sns.lineplot(x="n", y="cost", hue="cooling_schedule", data=df) ax.axhline(optimal_solution_weight, color="black", linestyle="dashed", alpha=0.8) ax.set(xlabel="n", ylabel="E") plt.tight_layout() if save: plt.savefig("figs/" + filename + "_cooling_schedule_cost.pdf") else: plt.show() plt.clf()
def plot_CIR_mcl(filename, save=False): df = open_pickle("data/" + filename + "_mcls") optimal_solution_weight = 9.985281 ax = sns.lineplot(x="n", y="cost", hue="l", data=df, palette=palette) ax.axhline(optimal_solution_weight, color="black", linestyle="dashed", alpha=0.8) ax.set(xlabel="n", ylabel="E") plt.tight_layout() if save: plt.savefig("figs/" + filename + "mcl" + ".pdf") plt.ylim(0, 100) plt.xlim(500, 1000) plt.savefig("figs/" + filename + "mcl_zoomed" + ".pdf") else: plt.show()