def test_yaml(): # Take DES test image, and test doing a psf run with GP interpolator # Use config parser: psf_file = os.path.join('output', 'gp_psf.fits') config = { 'input': { 'images': 'y1_test/DECam_00241238_01.fits.fz', 'cats': 'y1_test/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits', # What hdu is everything in? 'image_hdu': 1, 'badpix_hdu': 2, 'weight_hdu': 3, 'cat_hdu': 2, # What columns in the catalog have things we need? 'x_col': 'XWIN_IMAGE', 'y_col': 'YWIN_IMAGE', 'ra': 'TELRA', 'dec': 'TELDEC', 'gain': 'GAINA', 'sky_col': 'BACKGROUND', # How large should the postage stamp cutouts of the stars be? 'stamp_size': 31, }, 'psf': { 'model': { 'type': 'GSObjectModel', 'fastfit': True, 'gsobj': 'galsim.Gaussian(sigma=1.0)' }, 'interp': { 'type': 'GPInterp', 'keys': ['u', 'v'], 'kernel': 'RBF(200.0)', 'optimize': False, } }, 'output': { 'file_name': psf_file }, } # using piffify executable config['verbose'] = 0 with open('gp.yaml', 'w') as f: f.write(yaml.dump(config, default_flow_style=False)) piffify_exe = get_script_name('piffify') p = subprocess.Popen([piffify_exe, 'gp.yaml']) p.communicate() piff.read(psf_file)
def test_yaml(): # Take DES test image, and test doing a psf run with kNN interpolator # Now test running it via the config parser psf_file = os.path.join('output','knn_psf.fits') config = { 'input' : { 'images' : 'y1_test/DECam_00241238_01.fits.fz', 'cats' : 'y1_test/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits', # What hdu is everything in? 'image_hdu': 1, 'badpix_hdu': 2, 'weight_hdu': 3, 'cat_hdu': 2, # What columns in the catalog have things we need? 'x_col': 'XWIN_IMAGE', 'y_col': 'YWIN_IMAGE', 'ra': 'TELRA', 'dec': 'TELDEC', 'gain': 'GAINA', 'sky_col': 'BACKGROUND', # How large should the postage stamp cutouts of the stars be? 'stamp_size': 31, }, 'psf' : { 'model' : { 'type': 'GSObjectModel', 'fastfit': True, 'gsobj': 'galsim.Gaussian(sigma=1.0)' }, 'interp' : { 'type': 'kNNInterp', 'keys': ['u', 'v'], 'n_neighbors': 115,} }, 'output' : { 'file_name' : psf_file }, } # using piffify executable config['verbose'] = 0 with open('knn.yaml','w') as f: f.write(yaml.dump(config, default_flow_style=False)) piffify_exe = get_script_name('piffify') p = subprocess.Popen( [piffify_exe, 'knn.yaml'] ) p.communicate() psf = piff.read(psf_file) # by using n_neighbors = 115, when there are only 117 stars in the catalog, we should expect # that the standard deviation of the interpolated parameters should be small, since almost the # same set of stars are being averaged in every case. np.testing.assert_array_less( np.std([s.fit.params for s in psf.stars], axis=0), 0.01*np.mean([s.fit.params for s in psf.stars], axis=0), err_msg="Interpolated parameters show too much variation.")
def test_rhostats_config(): """Test running stats through a config file. """ if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger(log_file='output/test_rhostats_config.log') image_file = os.path.join('output','test_stats_image.fits') cat_file = os.path.join('output','test_stats_cat.fits') psf_file = os.path.join('output','test_rhostats.fits') rho_file = os.path.join('output','test_rhostats.pdf') config = { 'input' : { 'image_file_name' : image_file, 'cat_file_name' : cat_file, 'stamp_size' : 48 }, 'psf' : { 'model' : { 'type' : 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp' : { 'type' : 'Mean' }, }, 'output' : { 'file_name' : psf_file, 'stats' : { # Note: stats doesn't have to be a list. 'type': 'Rho', 'file_name': rho_file } }, } piff.piffify(config, logger) assert os.path.isfile(rho_file) # repeat with plotify function os.remove(rho_file) piff.plotify(config, logger) assert os.path.isfile(rho_file) # Test rho statistics directly. min_sep = 1 max_sep = 100 bin_size = 0.1 psf = piff.read(psf_file) orig_stars, wcs, pointing = piff.Input.process(config['input'], logger) stats = piff.RhoStats(min_sep=min_sep, max_sep=max_sep, bin_size=bin_size) stats.compute(psf, orig_stars) rhos = [stats.rho1, stats.rho2, stats.rho3, stats.rho4, stats.rho5] for rho in rhos: # Test the range of separations radius = np.exp(rho.logr) np.testing.assert_array_less(radius, max_sep) np.testing.assert_array_less(min_sep, radius) # bin_size is reduced slightly to get integer number of bins assert rho.bin_size < bin_size assert np.isclose(rho.bin_size, bin_size, rtol=0.1) np.testing.assert_array_almost_equal(np.diff(rho.logr), rho.bin_size, decimal=5) # Test that the max absolute value of each rho isn't crazy np.testing.assert_array_less(np.abs(rho.xip), 1) # # Check that each rho isn't precisely zero. This means the sum of abs > 0 np.testing.assert_array_less(0, np.sum(np.abs(rho.xip))) # Test using the piffify executable os.remove(rho_file) config['verbose'] = 0 with open('rho.yaml','w') as f: f.write(yaml.dump(config, default_flow_style=False)) piffify_exe = get_script_name('piffify') p = subprocess.Popen( [piffify_exe, 'rho.yaml'] ) p.communicate() assert os.path.isfile(rho_file) # Test using the plotify executable os.remove(rho_file) plotify_exe = get_script_name('plotify') p = subprocess.Popen( [plotify_exe, 'rho.yaml'] ) p.communicate() assert os.path.isfile(rho_file) # test running plotify with dir in config, with no logger, and with a modules specification. # (all to improve test coverage) config['output']['dir'] = '.' config['modules'] = [ 'custom_wcs' ] os.remove(rho_file) piff.plotify(config) assert os.path.isfile(rho_file)
def test_single_image(): """Test the simple case of one image and one catalog. """ if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger( log_file='output/test_single_image.log') # Make the image image = galsim.Image(2048, 2048, scale=0.26) # Where to put the stars. Include some flagged and not used locations. x_list = [ 123.12, 345.98, 567.25, 1094.94, 924.15, 1532.74, 1743.11, 888.39, 1033.29, 1409.31 ] y_list = [ 345.43, 567.45, 1094.32, 924.29, 1532.92, 1743.83, 888.83, 1033.19, 1409.20, 123.11 ] flag_list = [1, 1, 13, 1, 1, 4, 1, 1, 0, 1] # Draw a Gaussian PSF at each location on the image. sigma = 1.3 g1 = 0.23 g2 = -0.17 psf = galsim.Gaussian(sigma=sigma).shear(g1=g1, g2=g2) for x, y, flag in zip(x_list, y_list, flag_list): bounds = galsim.BoundsI(int(x - 31), int(x + 32), int(y - 31), int(y + 32)) offset = galsim.PositionD(x - int(x) - 0.5, y - int(y) - 0.5) psf.drawImage(image=image[bounds], method='no_pixel', offset=offset) # corrupt the ones that are marked as flagged if flag & 4: print('corrupting star at ', x, y) ar = image[bounds].array im_max = np.max(ar) * 0.2 ar[ar > im_max] = im_max image.addNoise( galsim.GaussianNoise(rng=galsim.BaseDeviate(1234), sigma=1e-6)) # Write out the image to a file image_file = os.path.join('output', 'simple_image.fits') image.write(image_file) # Write out the catalog to a file dtype = [('x', 'f8'), ('y', 'f8'), ('flag', 'i2')] data = np.empty(len(x_list), dtype=dtype) data['x'] = x_list data['y'] = y_list data['flag'] = flag_list cat_file = os.path.join('output', 'simple_cat.fits') fitsio.write(cat_file, data, clobber=True) # Use InputFiles to read these back in config = {'image_file_name': image_file, 'cat_file_name': cat_file} input = piff.InputFiles(config, logger=logger) assert input.image_file_name == [image_file] assert input.cat_file_name == [cat_file] # Check image assert input.nimages == 1 image1, _, image_pos, _, _, _ = input.getRawImageData(0) np.testing.assert_equal(image1.array, image.array) # Check catalog np.testing.assert_equal([pos.x for pos in image_pos], x_list) np.testing.assert_equal([pos.y for pos in image_pos], y_list) # Repeat, using flag columns this time. config = { 'image_file_name': image_file, 'cat_file_name': cat_file, 'flag_col': 'flag', 'use_flag': '1', 'skip_flag': '4', 'stamp_size': 48 } input = piff.InputFiles(config, logger=logger) assert input.nimages == 1 _, _, image_pos, _, _, _ = input.getRawImageData(0) assert len(image_pos) == 7 # Make star data orig_stars = input.makeStars() assert len(orig_stars) == 7 assert orig_stars[0].image.array.shape == (48, 48) # Process the star data # can only compare to truth if include_pixel=False model = piff.Gaussian(fastfit=True, include_pixel=False) interp = piff.Mean() fitted_stars = [model.fit(model.initialize(star)) for star in orig_stars] interp.solve(fitted_stars) print('mean = ', interp.mean) # Check that the interpolation is what it should be # Any position would work here. chipnum = 0 x = 1024 y = 123 orig_wcs = input.getWCS()[chipnum] orig_pointing = input.getPointing() image_pos = galsim.PositionD(x, y) world_pos = piff.StarData.calculateFieldPos(image_pos, orig_wcs, orig_pointing) u, v = world_pos.x, world_pos.y stamp_size = config['stamp_size'] target = piff.Star.makeTarget(x=x, y=y, u=u, v=v, wcs=orig_wcs, stamp_size=stamp_size, pointing=orig_pointing) true_params = [sigma, g1, g2] test_star = interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Check default values of options psf = piff.SimplePSF(model, interp) assert psf.chisq_thresh == 0.1 assert psf.max_iter == 30 assert psf.outliers == None assert psf.extra_interp_properties == [] # Now test running it via the config parser psf_file = os.path.join('output', 'simple_psf.fits') config = { 'input': { 'image_file_name': image_file, 'cat_file_name': cat_file, 'flag_col': 'flag', 'use_flag': 1, 'skip_flag': 4, 'stamp_size': stamp_size }, 'psf': { 'model': { 'type': 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp': { 'type': 'Mean' }, 'max_iter': 10, 'chisq_thresh': 0.2, }, 'output': { 'file_name': psf_file }, } orig_stars, wcs, pointing = piff.Input.process(config['input'], logger) # Use a SimplePSF to process the stars data this time. interp = piff.Mean() psf = piff.SimplePSF(model, interp, max_iter=10, chisq_thresh=0.2) assert psf.chisq_thresh == 0.2 assert psf.max_iter == 10 psf.fit(orig_stars, wcs, pointing, logger=logger) test_star = psf.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # test that drawStar and drawStarList work test_star = psf.drawStar(target) test_star_list = psf.drawStarList([target])[0] np.testing.assert_equal(test_star.fit.params, test_star_list.fit.params) np.testing.assert_equal(test_star.image.array, test_star_list.image.array) # test copy_image property of drawStar and draw for draw in [psf.drawStar, psf.model.draw]: target_star_copy = psf.interp.interpolate( piff.Star(target.data.copy(), target.fit.copy())) # interp is so that when we do psf.model.draw we have fit.params to work with test_star_copy = draw(target_star_copy, copy_image=True) test_star_nocopy = draw(target_star_copy, copy_image=False) # if we modify target_star_copy, then test_star_nocopy should be modified, # but not test_star_copy target_star_copy.image.array[0, 0] = 23456 assert test_star_nocopy.image.array[ 0, 0] == target_star_copy.image.array[0, 0] assert test_star_copy.image.array[0, 0] != target_star_copy.image.array[0, 0] # however the other pixels SHOULD still be all the same value assert test_star_nocopy.image.array[ 1, 1] == target_star_copy.image.array[1, 1] assert test_star_copy.image.array[1, 1] == target_star_copy.image.array[1, 1] # test that draw works test_image = psf.draw(x=target['x'], y=target['y'], stamp_size=config['input']['stamp_size'], flux=target.fit.flux, offset=target.fit.center) # this image should be the same values as test_star assert test_image == test_star.image # test that draw does not copy the image image_ref = psf.draw(x=target['x'], y=target['y'], stamp_size=config['input']['stamp_size'], flux=target.fit.flux, offset=target.fit.center, image=test_image) image_ref.array[0, 0] = 123456789 assert test_image.array[0, 0] == image_ref.array[0, 0] assert test_star.image.array[0, 0] != test_image.array[0, 0] assert test_star.image.array[1, 1] == test_image.array[1, 1] # Round trip to a file psf.write(psf_file, logger) psf2 = piff.read(psf_file, logger) assert type(psf2.model) is piff.Gaussian assert type(psf2.interp) is piff.Mean assert psf2.chisq == psf.chisq assert psf2.last_delta_chisq == psf.last_delta_chisq assert psf2.chisq_thresh == psf.chisq_thresh assert psf2.max_iter == psf.max_iter assert psf2.dof == psf.dof assert psf2.nremoved == psf.nremoved test_star = psf2.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Do the whole thing with the config parser os.remove(psf_file) piff.piffify(config, logger) psf3 = piff.read(psf_file) assert type(psf3.model) is piff.Gaussian assert type(psf3.interp) is piff.Mean assert psf3.chisq == psf.chisq assert psf3.last_delta_chisq == psf.last_delta_chisq assert psf3.chisq_thresh == psf.chisq_thresh assert psf3.max_iter == psf.max_iter assert psf3.dof == psf.dof assert psf3.nremoved == psf.nremoved test_star = psf3.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Test using the piffify executable os.remove(psf_file) # This would be simpler as a direct assignment, but this once, test the way you would set # this from the command line, which would call parse_variables. piff.config.parse_variables(config, ['verbose=0'], logger=logger) #config['verbose'] = 0 with open('simple.yaml', 'w') as f: f.write(yaml.dump(config, default_flow_style=False)) config2 = piff.config.read_config('simple.yaml') assert config == config2 piffify_exe = get_script_name('piffify') p = subprocess.Popen([piffify_exe, 'simple.yaml']) p.communicate() psf4 = piff.read(psf_file) assert type(psf4.model) is piff.Gaussian assert type(psf4.interp) is piff.Mean assert psf4.chisq == psf.chisq assert psf4.last_delta_chisq == psf.last_delta_chisq assert psf4.chisq_thresh == psf.chisq_thresh assert psf4.max_iter == psf.max_iter assert psf4.dof == psf.dof assert psf4.nremoved == psf.nremoved test_star = psf4.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # With very low max_iter, we hit the warning about non-convergence config['psf']['max_iter'] = 1 with CaptureLog(level=1) as cl: piff.piffify(config, cl.logger) assert 'PSF fit did not converge' in cl.output
def test_des_image(): """Test the whole process with a DES CCD. """ import os import fitsio image_file = 'input/DECam_00241238_01.fits.fz' cat_file = 'input/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits' orig_image = galsim.fits.read(image_file) psf_file = os.path.join('output','pixel_des_psf.fits') if __name__ == '__main__': # These match what Gary used in fit_des.py nstars = None scale = 0.15 size = 31 order = 2 nsigma = 4 else: # These are faster and good enough for the unit tests. nstars = 25 scale = 0.26 size = 15 order = 1 nsigma = 1. # This needs to be low to make sure we do test outlier rejection here. stamp_size = 25 # The configuration dict with the right input fields for the file we're using. start_sigma = 1.0/2.355 # TODO: Need to make this automatic somehow. config = { 'input' : { 'nstars': nstars, 'image_file_name' : image_file, 'image_hdu' : 1, 'weight_hdu' : 3, 'badpix_hdu' : 2, 'cat_file_name' : cat_file, 'cat_hdu' : 2, 'x_col' : 'XWIN_IMAGE', 'y_col' : 'YWIN_IMAGE', 'sky_col' : 'BACKGROUND', 'stamp_size' : stamp_size, 'ra' : 'TELRA', 'dec' : 'TELDEC', 'gain' : 'GAINA', # Test explicitly specifying the wcs (although it is the same here as what is in the # image anyway). 'wcs' : { 'type': 'Fits', 'file_name': image_file } }, 'output' : { 'file_name' : psf_file, }, 'psf' : { 'model' : { 'type' : 'PixelGrid', 'scale' : scale, 'size' : size, 'interp' : 'Lanczos(5)', 'start_sigma' : start_sigma, }, 'interp' : { 'type' : 'BasisPolynomial', 'order' : order, }, 'outliers' : { 'type' : 'Chisq', 'nsigma' : nsigma, 'max_remove' : 3 } }, } if __name__ == '__main__': config['verbose'] = 2 else: config['verbose'] = 0 # These tests are slow, and it's really just doing the same thing three times, so # only do the first one when running via nosetests. if __name__ == '__main__': # Start by doing things manually: logger = piff.config.setup_logger(2) # Largely copied from Gary's fit_des.py, but using the Piff input_handler to # read the input files. stars, wcs, pointing = piff.Input.process(config['input'], logger=logger) if nstars is not None: stars = stars[:nstars] # Make model, force PSF centering model = piff.PixelGrid(scale=scale, size=size, interp=piff.Lanczos(3), force_model_center=True, start_sigma=start_sigma, logger=logger) # Interpolator will be zero-order polynomial. # Find u, v ranges interp = piff.BasisPolynomial(order=order, logger=logger) # Make a psf psf = piff.SimplePSF(model, interp) psf.fit(stars, wcs, pointing, logger=logger) # The difference between the images of the fitted stars and the originals should be # consistent with noise. Keep track of how many don't meet that goal. n_bad = 0 # chisq/dof > 2 n_marginal = 0 # chisq/dof > 1.1 n_good = 0 # chisq/dof <= 1.1 # Note: The 2 and 1.1 values here are very arbitrary! for s in psf.stars: fitted = psf.drawStar(s) orig_stamp = orig_image[fitted.image.bounds] - s['sky'] fit_stamp = fitted.image x0 = int(s['x']+0.5) y0 = int(s['y']+0.5) b = galsim.BoundsI(x0-3,x0+3,y0-3,y0+3) #print('orig center = ',orig_stamp[b].array) #print('flux = ',orig_stamp.array.sum()) #print('fit center = ',fit_stamp[b].array) #print('flux = ',fit_stamp.array.sum()) flux = fitted.fit.flux #print('max diff/flux = ',np.max(np.abs(orig_stamp.array-fit_stamp.array))/flux) #np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2) weight = s.weight # These should be 1/var_pix resid = fit_stamp - orig_stamp chisq = np.sum(resid.array**2 * weight.array) print('chisq = ',chisq) print('cf. star.chisq, dof = ',s.fit.chisq, s.fit.dof) assert abs(chisq - s.fit.chisq) < 1.e-3 * chisq if chisq > 2. * s.fit.dof: n_bad += 1 elif chisq > 1.1 * s.fit.dof: n_marginal += 1 else: n_good += 1 # Check the convenience function that an end user would typically use offset = s.center_to_offset(s.fit.center) image = psf.draw(x=s['x'], y=s['y'], stamp_size=stamp_size, flux=s.fit.flux, offset=offset) np.testing.assert_almost_equal(image.array, fit_stamp.array, decimal=4) print('n_good, marginal, bad = ',n_good,n_marginal,n_bad) # The real counts are 10 and 2. So this says make sure any updates to the code don't make # things much worse. assert n_marginal <= 12 assert n_bad <= 3 # Use piffify function print('start piffify') piff.piffify(config) print('read stars') stars, wcs, pointing = piff.Input.process(config['input']) print('read psf') psf = piff.read(psf_file) stars = [psf.model.initialize(s) for s in stars] flux = stars[0].fit.flux offset = stars[0].center_to_offset(stars[0].fit.center) fit_stamp = psf.draw(x=stars[0]['x'], y=stars[0]['y'], stamp_size=stamp_size, flux=flux, offset=offset) orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky'] # The first star happens to be a good one, so go ahead and test the arrays directly. np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2) # Test using the piffify executable with open('pixel_des.yaml','w') as f: f.write(yaml.dump(config, default_flow_style=False)) if __name__ == '__main__': if os.path.exists(psf_file): os.remove(psf_file) piffify_exe = get_script_name('piffify') print('start piffify executable') p = subprocess.Popen( [piffify_exe, 'pixel_des.yaml'] ) p.communicate() print('read stars') stars, wcs, pointing = piff.Input.process(config['input']) print('read psf') psf = piff.read(psf_file) stars = [psf.model.initialize(s) for s in stars] flux = stars[0].fit.flux offset = stars[0].center_to_offset(stars[0].fit.center) fit_stamp = psf.draw(x=stars[0]['x'], y=stars[0]['y'], stamp_size=stamp_size, flux=flux, offset=offset) orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky'] np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2)
def test_single_image(): """Test the whole process with a single image. Note: This test is based heavily on test_single_image in test_simple.py. """ import os import fitsio np_rng = np.random.RandomState(1234) # Make the image image = galsim.Image(2048, 2048, scale=0.2) # The (x,y) values will be on a grid 5 x 5 stars with a random sub-pixel offset. xvals = np.linspace(50., 1950., 5) yvals = np.linspace(50., 1950., 5) x_list, y_list = np.meshgrid(xvals, yvals) x_list = x_list.flatten() y_list = y_list.flatten() x_list = x_list + (np_rng.rand(len(x_list)) - 0.5) y_list = y_list + (np_rng.rand(len(x_list)) - 0.5) print('x_list = ',x_list) print('y_list = ',y_list) # Range of fluxes from 100 to 15000 flux_list = 100. * np.exp(5. * np_rng.rand(len(x_list))) print('fluxes range from ',np.min(flux_list),np.max(flux_list)) # Draw a Moffat PSF at each location on the image. # Have the truth values vary quadratically across the image. beta_fn = lambda x,y: 3.5 - 0.1*(x/1000) + 0.08*(y/1000)**2 fwhm_fn = lambda x,y: 0.9 + 0.05*(x/1000) - 0.03*(y/1000) + 0.02*(x/1000)*(y/1000) e1_fn = lambda x,y: 0.02 - 0.01*(x/1000) e2_fn = lambda x,y: -0.03 + 0.02*(x/1000)**2 - 0.01*(y/1000)*2 for x,y,flux in zip(x_list, y_list, flux_list): beta = beta_fn(x,y) fwhm = fwhm_fn(x,y) e1 = e1_fn(x,y) e2 = e2_fn(x,y) print(x,y,beta,fwhm,e1,e2) moffat = galsim.Moffat(fwhm=fwhm, beta=beta, flux=flux).shear(e1=e1, e2=e2) bounds = galsim.BoundsI(int(x-31), int(x+32), int(y-31), int(y+32)) offset = galsim.PositionD( x-int(x)-0.5 , y-int(y)-0.5 ) moffat.drawImage(image=image[bounds], offset=offset, method='no_pixel') print('drew image') # Add sky level and noise sky_level = 1000 noise_sigma = 0.1 # Not much noise to keep this an easy test. image += sky_level image.addNoise(galsim.GaussianNoise(sigma=noise_sigma)) # Write out the image to a file image_file = os.path.join('output','pixel_moffat_image.fits') image.write(image_file) print('wrote image') # Write out the catalog to a file dtype = [ ('x','f8'), ('y','f8') ] data = np.empty(len(x_list), dtype=dtype) data['x'] = x_list data['y'] = y_list cat_file = os.path.join('output','pixel_moffat_cat.fits') fitsio.write(cat_file, data, clobber=True) print('wrote catalog') # Use InputFiles to read these back in config = { 'image_file_name': image_file, 'cat_file_name': cat_file, 'stamp_size': 32, 'noise' : noise_sigma**2, 'sky' : sky_level, } input = piff.InputFiles(config) assert input.image_file_name == [image_file] assert input.cat_file_name == [cat_file] # Check image assert len(input.images) == 1 np.testing.assert_equal(input.images[0].array, image.array) # Check catalog assert len(input.image_pos) == 1 assert len(input.image_pos[0]) == len(x_list) np.testing.assert_equal([pos.x for pos in input.image_pos[0]], x_list) np.testing.assert_equal([pos.y for pos in input.image_pos[0]], y_list) # Make stars orig_stars = input.makeStars() assert len(orig_stars) == len(x_list) assert orig_stars[0].image.array.shape == (32,32) # Make a test star, not at the location of any of the model stars to use for each of the # below tests. x0 = 1024 # Some random position, not where a star was originally. y0 = 133 beta = beta_fn(x0,y0) fwhm = fwhm_fn(x0,y0) e1 = e1_fn(x0,y0) e2 = e2_fn(x0,y0) moffat = galsim.Moffat(fwhm=fwhm, beta=beta).shear(e1=e1, e2=e2) target_star = piff.Star.makeTarget(x=x0, y=y0, scale=image.scale) test_im = galsim.ImageD(bounds=target_star.image.bounds, scale=image.scale) moffat.drawImage(image=test_im, method='no_pixel', use_true_center=False) print('made test star') if __name__ == '__main__': logger = piff.config.setup_logger(2) order = 2 else: logger = None order = 1 # These tests are slow, and it's really just doing the same thing three times, so # only do the first one when running via nosetests. psf_file = os.path.join('output','pixel_psf.fits') if __name__ == '__main__': # Process the star data model = piff.PixelGrid(0.2, 16, start_sigma=0.9/2.355) interp = piff.BasisPolynomial(order=order) pointing = None # wcs is not Celestial here, so pointing needs to be None. psf = piff.SimplePSF(model, interp) psf.fit(orig_stars, {0:input.images[0].wcs}, pointing, logger=logger) # Check that the interpolation is what it should be print('target.flux = ',target_star.fit.flux) test_star = psf.drawStar(target_star) print('flux = ', test_im.array.sum(), test_star.image.array.sum()) print('max diff = ',np.max(np.abs(test_star.image.array-test_im.array))) np.testing.assert_almost_equal(test_star.image.array/2, test_im.array/2, decimal=3) # Check the convenience function that an end user would typically use image = psf.draw(x=x0, y=y0) np.testing.assert_almost_equal(image.array/2, test_im.array/2, decimal=3) # Round trip through a file psf.write(psf_file, logger) psf = piff.read(psf_file, logger) assert type(psf.model) is piff.PixelGrid assert type(psf.interp) is piff.BasisPolynomial test_star = psf.drawStar(target_star) np.testing.assert_almost_equal(test_star.image.array/2, test_im.array/2, decimal=3) # Check the convenience function that an end user would typically use image = psf.draw(x=x0, y=y0) np.testing.assert_almost_equal(image.array/2., test_im.array/2., decimal=3) # Do the whole thing with the config parser config = { 'input' : { 'image_file_name' : image_file, 'cat_file_name' : cat_file, 'x_col' : 'x', 'y_col' : 'y', 'noise' : noise_sigma**2, 'sky' : sky_level, 'stamp_size' : 48 # Bigger than we drew, but should still work. }, 'output' : { 'file_name' : psf_file }, 'psf' : { 'model' : { 'type' : 'PixelGrid', 'scale' : 0.2, 'size' : 16, # Much smaller than the input stamps, but this is plenty here. 'start_sigma' : 0.9/2.355 }, 'interp' : { 'type' : 'BasisPolynomial', 'order' : order }, }, } if __name__ == '__main__': config['verbose'] = 2 else: config['verbose'] = 0 print("Running piffify function") piff.piffify(config) psf = piff.read(psf_file) test_star = psf.drawStar(target_star) print("Max abs diff = ",np.max(np.abs(test_star.image.array - test_im.array))) np.testing.assert_almost_equal(test_star.image.array/2., test_im.array/2., decimal=3) # Test using the piffify executable with open('pixel_moffat.yaml','w') as f: f.write(yaml.dump(config, default_flow_style=False)) if __name__ == '__main__': print("Running piffify executable") if os.path.exists(psf_file): os.remove(psf_file) piffify_exe = get_script_name('piffify') p = subprocess.Popen( [piffify_exe, 'pixel_moffat.yaml'] ) p.communicate() psf = piff.read(psf_file) test_star = psf.drawStar(target_star) np.testing.assert_almost_equal(test_star.image.array/2., test_im.array/2., decimal=3) # test copy_image property of drawStar and draw for draw in [psf.drawStar, psf.model.draw]: target_star_copy = psf.interp.interpolate(piff.Star(target_star.data.copy(), target_star.fit.copy())) # interp is so that when we do psf.model.draw we have fit.params to work with test_star_copy = draw(target_star_copy, copy_image=True) test_star_nocopy = draw(target_star_copy, copy_image=False) # if we modify target_star_copy, then test_star_nocopy should be modified, but not test_star_copy target_star_copy.image.array[0,0] = 23456 assert test_star_nocopy.image.array[0,0] == target_star_copy.image.array[0,0] assert test_star_copy.image.array[0,0] != target_star_copy.image.array[0,0] # however the other pixels SHOULD still be all the same value assert test_star_nocopy.image.array[1,1] == target_star_copy.image.array[1,1] assert test_star_copy.image.array[1,1] == target_star_copy.image.array[1,1] # check that drawing onto an image does not return a copy image = psf.draw(x=x0, y=y0) image_reference = psf.draw(x=x0, y=y0, image=image) image_reference.array[0,0] = 123456 assert image.array[0,0] == image_reference.array[0,0]
def test_des_image(): """Test the whole process with a DES CCD. """ import os import fitsio image_file = 'y1_test/DECam_00241238_01.fits.fz' cat_file = 'y1_test/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits' orig_image = galsim.fits.read(image_file) psf_file = os.path.join('output', 'pixel_des_psf.fits') if __name__ == '__main__': # These match what Gary used in fit_des.py nstars = None scale = 0.15 size = 41 else: # These are faster and good enough for the unit tests. nstars = 25 scale = 0.2 size = 21 stamp_size = 51 # The configuration dict with the right input fields for the file we're using. start_sigma = 1.0 / 2.355 # TODO: Need to make this automatic somehow. config = { 'input': { 'images': image_file, 'image_hdu': 1, 'weight_hdu': 3, 'badpix_hdu': 2, 'cats': cat_file, 'cat_hdu': 2, 'x_col': 'XWIN_IMAGE', 'y_col': 'YWIN_IMAGE', 'sky_col': 'BACKGROUND', 'stamp_size': stamp_size, 'ra': 'TELRA', 'dec': 'TELDEC', 'gain': 'GAINA', }, 'output': { 'file_name': psf_file, }, 'psf': { 'model': { 'type': 'PixelGrid', 'scale': scale, 'size': size, 'start_sigma': start_sigma, }, 'interp': { 'type': 'BasisPolynomial', 'order': 2, }, }, } if __name__ == '__main__': config['verbose'] = 3 # These tests are slow, and it's really just doing the same thing three times, so # only do the first one when running via nosetests. if True: # Start by doing things manually: if __name__ == '__main__': logger = piff.config.setup_logger(2) else: logger = None # Largely copied from Gary's fit_des.py, but using the Piff input_handler to # read the input files. stars, wcs, pointing = piff.Input.process(config['input'], logger=logger) if nstars is not None: stars = stars[:nstars] # Make model, force PSF centering model = piff.PixelGrid(scale=scale, size=size, interp=piff.Lanczos(3), force_model_center=True, start_sigma=start_sigma, logger=logger) # Interpolator will be zero-order polynomial. # Find u, v ranges interp = piff.BasisPolynomial(order=2, logger=logger) # Make a psf psf = piff.SimplePSF(model, interp) psf.fit(stars, wcs, pointing, logger=logger) # The difference between the images of the fitted stars and the originals should be # consistent with noise. Keep track of how many don't meet that goal. n_bad = 0 # chisq/dof > 2 n_marginal = 0 # chisq/dof > 1.1 n_good = 0 # chisq/dof <= 1.1 # Note: The 2 and 1.1 values here are very arbitrary! for s in psf.stars: fitted = psf.drawStar(s) orig_stamp = orig_image[fitted.image.bounds] - s['sky'] fit_stamp = fitted.image x0 = int(s['x'] + 0.5) y0 = int(s['y'] + 0.5) b = galsim.BoundsI(x0 - 3, x0 + 3, y0 - 3, y0 + 3) #print('orig center = ',orig_stamp[b].array) #print('flux = ',orig_stamp.array.sum()) #print('fit center = ',fit_stamp[b].array) #print('flux = ',fit_stamp.array.sum()) flux = fitted.fit.flux #print('max diff/flux = ',np.max(np.abs(orig_stamp.array-fit_stamp.array))/flux) #np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2) weight = s.weight # These should be 1/var_pix resid = fit_stamp - orig_stamp chisq = np.sum(resid.array**2 * weight.array) print('chisq = ', chisq) print('cf. star.chisq, dof = ', s.fit.chisq, s.fit.dof) assert abs(chisq - s.fit.chisq) < 1.e-3 * chisq if chisq > 2. * s.fit.dof: n_bad += 1 elif chisq > 1.1 * s.fit.dof: n_marginal += 1 else: n_good += 1 # Check the convenience function that an end user would typically use offset = s.center_to_offset(s.fit.center) image = psf.draw(x=s['x'], y=s['y'], stamp_size=stamp_size, flux=s.fit.flux, offset=offset) np.testing.assert_almost_equal(image.array, fit_stamp.array, decimal=4) print('n_good, marginal, bad = ', n_good, n_marginal, n_bad) # The real counts are 10 and 2. So this says make sure any updates to the code don't make # things much worse. assert n_marginal <= 12 assert n_bad <= 3 # Use piffify function if __name__ == '__main__': print('start piffify') piff.piffify(config) print('read stars') stars, wcs, pointing = piff.Input.process(config['input']) print('read psf') psf = piff.read(psf_file) stars = [psf.model.initialize(s) for s in stars] flux = stars[0].fit.flux offset = stars[0].center_to_offset(stars[0].fit.center) fit_stamp = psf.draw(x=stars[0]['x'], y=stars[0]['y'], stamp_size=stamp_size, flux=flux, offset=offset) orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky'] # The first star happens to be a good one, so go ahead and test the arrays directly. np.testing.assert_almost_equal(fit_stamp.array / flux, orig_stamp.array / flux, decimal=2) # Test using the piffify executable config['verbose'] = 0 with open('pixel_des.yaml', 'w') as f: f.write(yaml.dump(config, default_flow_style=False)) if __name__ == '__main__': if os.path.exists(psf_file): os.remove(psf_file) piffify_exe = get_script_name('piffify') print('start piffify executable') p = subprocess.Popen([piffify_exe, 'pixel_des.yaml']) p.communicate() print('read stars') stars, wcs, pointing = piff.Input.process(config['input']) print('read psf') psf = piff.read(psf_file) stars = [psf.model.initialize(s) for s in stars] flux = stars[0].fit.flux offset = stars[0].center_to_offset(stars[0].fit.center) fit_stamp = psf.draw(x=stars[0]['x'], y=stars[0]['y'], stamp_size=stamp_size, flux=flux, offset=offset) orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky'] np.testing.assert_almost_equal(fit_stamp.array / flux, orig_stamp.array / flux, decimal=2)
def test_single_image(): """Test the whole process with a single image. Note: This test is based heavily on test_single_image in test_simple.py. """ import os import fitsio np_rng = np.random.RandomState(1234) # Make the image image = galsim.Image(2048, 2048, scale=0.2) # The (x,y) values will be on a grid 5 x 5 stars with a random sub-pixel offset. xvals = np.linspace(50., 1950., 5) yvals = np.linspace(50., 1950., 5) x_list, y_list = np.meshgrid(xvals, yvals) x_list = x_list.flatten() y_list = y_list.flatten() x_list = x_list + (np_rng.rand(len(x_list)) - 0.5) y_list = y_list + (np_rng.rand(len(x_list)) - 0.5) print('x_list = ', x_list) print('y_list = ', y_list) # Range of fluxes from 100 to 15000 flux_list = 100. * np.exp(5. * np_rng.rand(len(x_list))) print('fluxes range from ', np.min(flux_list), np.max(flux_list)) # Draw a Moffat PSF at each location on the image. # Have the truth values vary quadratically across the image. beta_fn = lambda x, y: 3.5 - 0.1 * (x / 1000) + 0.08 * (y / 1000)**2 fwhm_fn = lambda x, y: 0.9 + 0.05 * (x / 1000) - 0.03 * ( y / 1000) + 0.02 * (x / 1000) * (y / 1000) e1_fn = lambda x, y: 0.02 - 0.01 * (x / 1000) e2_fn = lambda x, y: -0.03 + 0.02 * (x / 1000)**2 - 0.01 * (y / 1000) * 2 for x, y, flux in zip(x_list, y_list, flux_list): beta = beta_fn(x, y) fwhm = fwhm_fn(x, y) e1 = e1_fn(x, y) e2 = e2_fn(x, y) print(x, y, beta, fwhm, e1, e2) moffat = galsim.Moffat(fwhm=fwhm, beta=beta, flux=flux).shear(e1=e1, e2=e2) bounds = galsim.BoundsI(int(x - 31), int(x + 32), int(y - 31), int(y + 32)) offset = galsim.PositionD(x - int(x) - 0.5, y - int(y) - 0.5) moffat.drawImage(image=image[bounds], offset=offset, method='no_pixel') print('drew image') # Write out the image to a file image_file = os.path.join('data', 'pixel_moffat_image.fits') image.write(image_file) print('wrote image') # Write out the catalog to a file dtype = [('x', 'f8'), ('y', 'f8')] data = np.empty(len(x_list), dtype=dtype) data['x'] = x_list data['y'] = y_list cat_file = os.path.join('data', 'pixel_moffat_cat.fits') fitsio.write(cat_file, data, clobber=True) print('wrote catalog') # Use InputFiles to read these back in input = piff.InputFiles(image_file, cat_file, stamp_size=32) assert input.image_files == [image_file] assert input.cat_files == [cat_file] assert input.x_col == 'x' assert input.y_col == 'y' # Check image input.readImages() assert len(input.images) == 1 np.testing.assert_equal(input.images[0].array, image.array) # Check catalog input.readStarCatalogs() assert len(input.cats) == 1 np.testing.assert_equal(input.cats[0]['x'], x_list) np.testing.assert_equal(input.cats[0]['y'], y_list) # Make stars orig_stars = input.makeStars() assert len(orig_stars) == len(x_list) assert orig_stars[0].image.array.shape == (32, 32) # Make a test star, not at the location of any of the model stars to use for each of the # below tests. x0 = 1024 # Some random position, not where a star was originally. y0 = 133 beta = beta_fn(x0, y0) fwhm = fwhm_fn(x0, y0) e1 = e1_fn(x0, y0) e2 = e2_fn(x0, y0) moffat = galsim.Moffat(fwhm=fwhm, beta=beta).shear(e1=e1, e2=e2) target_star = piff.Star.makeTarget(x=x0, y=y0, scale=image.scale) test_im = galsim.ImageD(bounds=target_star.image.bounds, scale=image.scale) moffat.drawImage(image=test_im, method='no_pixel', use_true_center=False) print('made test star') # These tests are slow, and it's really just doing the same thing three times, so # only do the first one when running via nosetests. if True: # Process the star data model = piff.PixelGrid(0.2, 16, start_sigma=0.9 / 2.355) interp = piff.BasisPolynomial(order=2) if __name__ == '__main__': logger = piff.config.setup_logger(2) else: logger = None pointing = None # wcs is not Celestial here, so pointing needs to be None. psf = piff.SimplePSF(model, interp) psf.fit(orig_stars, {0: input.images[0].wcs}, pointing, logger=logger) # Check that the interpolation is what it should be print('target.flux = ', target_star.fit.flux) test_star = psf.drawStar(target_star) #print('test_im center = ',test_im[b].array) #print('flux = ',test_im.array.sum()) #print('interp_im center = ',test_star.image[b].array) #print('flux = ',test_star.image.array.sum()) #print('max diff = ',np.max(np.abs(test_star.image.array-test_im.array))) np.testing.assert_almost_equal(test_star.image.array, test_im.array, decimal=3) # Check the convenience function that an end user would typically use image = psf.draw(x=x0, y=y0) np.testing.assert_almost_equal(image.array, test_im.array, decimal=3) # Round trip through a file psf_file = os.path.join('output', 'pixel_psf.fits') psf.write(psf_file, logger) psf = piff.read(psf_file, logger) assert type(psf.model) is piff.PixelGrid assert type(psf.interp) is piff.BasisPolynomial test_star = psf.drawStar(target_star) np.testing.assert_almost_equal(test_star.image.array, test_im.array, decimal=3) # Check the convenience function that an end user would typically use image = psf.draw(x=x0, y=y0) np.testing.assert_almost_equal(image.array, test_im.array, decimal=3) # Do the whole thing with the config parser config = { 'input': { 'images': image_file, 'cats': cat_file, 'x_col': 'x', 'y_col': 'y', 'stamp_size': 48 # Bigger than we drew, but should still work. }, 'output': { 'file_name': psf_file }, 'psf': { 'model': { 'type': 'PixelGrid', 'scale': 0.2, 'size': 16, # Much smaller than the input stamps, but this is plenty here. 'start_sigma': 0.9 / 2.355 }, 'interp': { 'type': 'BasisPolynomial', 'order': 2 }, }, } if __name__ == '__main__': print("Running piffify function") piff.piffify(config) psf = piff.read(psf_file) test_star = psf.drawStar(target_star) np.testing.assert_almost_equal(test_star.image.array, test_im.array, decimal=3) # Test using the piffify executable config['verbose'] = 0 with open('pixel_moffat.yaml', 'w') as f: f.write(yaml.dump(config, default_flow_style=False)) if __name__ == '__main__': print("Running piffify executable") if os.path.exists(psf_file): os.remove(psf_file) piffify_exe = get_script_name('piffify') p = subprocess.Popen([piffify_exe, 'pixel_moffat.yaml']) p.communicate() psf = piff.read(psf_file) test_star = psf.drawStar(target_star) np.testing.assert_almost_equal(test_star.image.array, test_im.array, decimal=3)
def test_single_image(): """Test the simple case of one image and one catalog. """ # Make the image image = galsim.Image(2048, 2048, scale=0.26) # Where to put the stars. Include some flagged and not used locations. x_list = [ 123.12, 345.98, 567.25, 1094.94, 924.15, 1532.74, 1743.11, 888.39, 1033.29, 1409.31 ] y_list = [ 345.43, 567.45, 1094.32, 924.29, 1532.92, 1743.83, 888.83, 1033.19, 1409.20, 123.11 ] flag_list = [0, 0, 12, 0, 0, 1, 0, 0, 0, 0] use_list = [1, 1, 1, 1, 1, 0, 1, 1, 0, 1] # Draw a Gaussian PSF at each location on the image. sigma = 1.3 g1 = 0.23 g2 = -0.17 psf = galsim.Gaussian(sigma=sigma).shear(g1=g1, g2=g2) for x, y, flag, use in zip(x_list, y_list, flag_list, use_list): bounds = galsim.BoundsI(int(x - 31), int(x + 32), int(y - 31), int(y + 32)) offset = galsim.PositionD(x - int(x) - 0.5, y - int(y) - 0.5) psf.drawImage(image=image[bounds], method='no_pixel', offset=offset) # corrupt the ones that are marked as flagged if flag: print('corrupting star at ', x, y) ar = image[bounds].array im_max = np.max(ar) * 0.2 ar[ar > im_max] = im_max image.addNoise( galsim.GaussianNoise(rng=galsim.BaseDeviate(1234), sigma=1e-6)) # Write out the image to a file image_file = os.path.join('data', 'simple_image.fits') image.write(image_file) # Write out the catalog to a file dtype = [('x', 'f8'), ('y', 'f8'), ('flag', 'i2'), ('use', 'i2')] data = np.empty(len(x_list), dtype=dtype) data['x'] = x_list data['y'] = y_list data['flag'] = flag_list data['use'] = use_list cat_file = os.path.join('data', 'simple_cat.fits') fitsio.write(cat_file, data, clobber=True) # Use InputFiles to read these back in input = piff.InputFiles(image_file, cat_file) assert input.image_files == [image_file] assert input.cat_files == [cat_file] assert input.x_col == 'x' assert input.y_col == 'y' # Check image input.readImages() assert len(input.images) == 1 np.testing.assert_equal(input.images[0].array, image.array) # Check catalog input.readStarCatalogs() assert len(input.cats) == 1 np.testing.assert_equal(input.cats[0]['x'], x_list) np.testing.assert_equal(input.cats[0]['y'], y_list) # Repeat, using flag and use columns this time. input = piff.InputFiles(image_file, cat_file, flag_col='flag', use_col='use', stamp_size=48) assert input.flag_col == 'flag' assert input.use_col == 'use' input.readImages() input.readStarCatalogs() assert len(input.cats[0]) == 7 # Make star data orig_stars = input.makeStars() assert len(orig_stars) == 7 assert orig_stars[0].image.array.shape == (48, 48) # Process the star data # can only compare to truth if include_pixel=False model = piff.Gaussian(fastfit=True, include_pixel=False) interp = piff.Mean() fitted_stars = [model.fit(model.initialize(star)) for star in orig_stars] interp.solve(fitted_stars) print('mean = ', interp.mean) # Check that the interpolation is what it should be target = piff.Star.makeTarget(x=1024, y=123) # Any position would work here. true_params = [sigma, g1, g2] test_star = interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Now test running it via the config parser psf_file = os.path.join('output', 'simple_psf.fits') config = { 'input': { 'images': image_file, 'cats': cat_file, 'flag_col': 'flag', 'use_col': 'use', 'stamp_size': 48 }, 'psf': { 'model': { 'type': 'Gaussian', 'fastfit': True, 'include_pixel': False }, 'interp': { 'type': 'Mean' }, }, 'output': { 'file_name': psf_file }, } if __name__ == '__main__': logger = piff.config.setup_logger(verbose=2) else: logger = piff.config.setup_logger(verbose=0) orig_stars, wcs, pointing = piff.Input.process(config['input'], logger) # Use a SimplePSF to process the stars data this time. psf = piff.SimplePSF(model, interp) psf.fit(orig_stars, wcs, pointing, logger=logger) test_star = psf.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Round trip to a file psf.write(psf_file, logger) psf = piff.read(psf_file, logger) assert type(psf.model) is piff.Gaussian assert type(psf.interp) is piff.Mean test_star = psf.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Do the whole thing with the config parser os.remove(psf_file) piff.piffify(config, logger) psf = piff.read(psf_file) test_star = psf.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Test using the piffify executable os.remove(psf_file) config['verbose'] = 0 with open('simple.yaml', 'w') as f: f.write(yaml.dump(config, default_flow_style=False)) piffify_exe = get_script_name('piffify') p = subprocess.Popen([piffify_exe, 'simple.yaml']) p.communicate() psf = piff.read(psf_file) test_star = psf.interp.interpolate(target) np.testing.assert_almost_equal(test_star.fit.params, true_params, decimal=4) # Test that we can make rho statistics min_sep = 1 max_sep = 100 bin_size = 0.1 stats = piff.RhoStats(min_sep=min_sep, max_sep=max_sep, bin_size=bin_size) stats.compute(psf, orig_stars) rhos = [stats.rho1, stats.rho2, stats.rho3, stats.rho4, stats.rho5] for rho in rhos: # Test the range of separations radius = np.exp(rho.logr) # last bin can be one bigger than max_sep np.testing.assert_array_less(radius, np.exp(np.log(max_sep) + bin_size)) np.testing.assert_array_less(min_sep, radius) np.testing.assert_array_almost_equal(np.diff(rho.logr), bin_size, decimal=5) # Test that the max absolute value of each rho isn't crazy np.testing.assert_array_less(np.abs(rho.xip), 1) # # Check that each rho isn't precisely zero. This means the sum of abs > 0 np.testing.assert_array_less(0, np.sum(np.abs(rho.xip))) # Test the plotting and writing rho_psf_file = os.path.join('output', 'simple_psf_rhostats.pdf') stats.write(rho_psf_file) # Test that we can make summary shape statistics, using HSM shapeStats = piff.ShapeHistogramsStats() shapeStats.compute(psf, orig_stars) # test their characteristics np.testing.assert_array_almost_equal(sigma, shapeStats.T, decimal=4) np.testing.assert_array_almost_equal(sigma, shapeStats.T_model, decimal=3) np.testing.assert_array_almost_equal(g1, shapeStats.g1, decimal=4) np.testing.assert_array_almost_equal(g1, shapeStats.g1_model, decimal=3) np.testing.assert_array_almost_equal(g2, shapeStats.g2, decimal=4) np.testing.assert_array_almost_equal(g2, shapeStats.g2_model, decimal=3) shape_psf_file = os.path.join('output', 'simple_psf_shapestats.pdf') shapeStats.write(shape_psf_file) # Test that we can use the config parser for both RhoStats and ShapeHistogramsStats config['output']['stats'] = [ { 'type': 'ShapeHistograms', 'file_name': shape_psf_file }, { 'type': 'Rho', 'file_name': rho_psf_file }, { 'type': 'TwoDHist', 'file_name': os.path.join('output', 'simple_psf_twodhiststats.pdf'), 'number_bins_u': 3, 'number_bins_v': 3, }, { 'type': 'TwoDHist', 'file_name': os.path.join('output', 'simple_psf_twodhiststats_std.pdf'), 'reducing_function': 'np.std', 'number_bins_u': 3, 'number_bins_v': 3, }, ] os.remove(psf_file) os.remove(rho_psf_file) os.remove(shape_psf_file) piff.piffify(config, logger) # Test using the piffify executable os.remove(psf_file) os.remove(rho_psf_file) os.remove(shape_psf_file) config['verbose'] = 0 with open('simple.yaml', 'w') as f: f.write(yaml.dump(config, default_flow_style=False)) p = subprocess.Popen([piffify_exe, 'simple.yaml']) p.communicate()