示例#1
0
def test_yaml():
    # Take DES test image, and test doing a psf run with GP interpolator
    # Use config parser:
    psf_file = os.path.join('output', 'gp_psf.fits')
    config = {
        'input': {
            'images': 'y1_test/DECam_00241238_01.fits.fz',
            'cats':
            'y1_test/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits',

            # What hdu is everything in?
            'image_hdu': 1,
            'badpix_hdu': 2,
            'weight_hdu': 3,
            'cat_hdu': 2,

            # What columns in the catalog have things we need?
            'x_col': 'XWIN_IMAGE',
            'y_col': 'YWIN_IMAGE',
            'ra': 'TELRA',
            'dec': 'TELDEC',
            'gain': 'GAINA',
            'sky_col': 'BACKGROUND',

            # How large should the postage stamp cutouts of the stars be?
            'stamp_size': 31,
        },
        'psf': {
            'model': {
                'type': 'GSObjectModel',
                'fastfit': True,
                'gsobj': 'galsim.Gaussian(sigma=1.0)'
            },
            'interp': {
                'type': 'GPInterp',
                'keys': ['u', 'v'],
                'kernel': 'RBF(200.0)',
                'optimize': False,
            }
        },
        'output': {
            'file_name': psf_file
        },
    }

    # using piffify executable
    config['verbose'] = 0
    with open('gp.yaml', 'w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    piffify_exe = get_script_name('piffify')
    p = subprocess.Popen([piffify_exe, 'gp.yaml'])
    p.communicate()
    piff.read(psf_file)
示例#2
0
def test_yaml():
    # Take DES test image, and test doing a psf run with kNN interpolator
    # Now test running it via the config parser
    psf_file = os.path.join('output','knn_psf.fits')
    config = {
        'input' : {
            'images' : 'y1_test/DECam_00241238_01.fits.fz',
            'cats' : 'y1_test/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits',
            # What hdu is everything in?
            'image_hdu': 1,
            'badpix_hdu': 2,
            'weight_hdu': 3,
            'cat_hdu': 2,

            # What columns in the catalog have things we need?
            'x_col': 'XWIN_IMAGE',
            'y_col': 'YWIN_IMAGE',
            'ra': 'TELRA',
            'dec': 'TELDEC',
            'gain': 'GAINA',
            'sky_col': 'BACKGROUND',

            # How large should the postage stamp cutouts of the stars be?
            'stamp_size': 31,
        },
        'psf' : {
            'model' : { 'type': 'GSObjectModel',
                        'fastfit': True,
                        'gsobj': 'galsim.Gaussian(sigma=1.0)' },
            'interp' : { 'type': 'kNNInterp',
                         'keys': ['u', 'v'],
                         'n_neighbors': 115,}
        },
        'output' : { 'file_name' : psf_file },
    }

    # using piffify executable
    config['verbose'] = 0
    with open('knn.yaml','w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    piffify_exe = get_script_name('piffify')
    p = subprocess.Popen( [piffify_exe, 'knn.yaml'] )
    p.communicate()
    psf = piff.read(psf_file)

    # by using n_neighbors = 115, when there are only 117 stars in the catalog, we should expect
    # that the standard deviation of the interpolated parameters should be small, since almost the
    # same set of stars are being averaged in every case.
    np.testing.assert_array_less(
            np.std([s.fit.params for s in psf.stars], axis=0),
            0.01*np.mean([s.fit.params for s in psf.stars], axis=0),
            err_msg="Interpolated parameters show too much variation.")
示例#3
0
def test_rhostats_config():
    """Test running stats through a config file.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(log_file='output/test_rhostats_config.log')

    image_file = os.path.join('output','test_stats_image.fits')
    cat_file = os.path.join('output','test_stats_cat.fits')
    psf_file = os.path.join('output','test_rhostats.fits')
    rho_file = os.path.join('output','test_rhostats.pdf')
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'stamp_size' : 48
        },
        'psf' : {
            'model' : { 'type' : 'Gaussian',
                        'fastfit': True,
                        'include_pixel': False },
            'interp' : { 'type' : 'Mean' },
        },
        'output' : {
            'file_name' : psf_file,
            'stats' : {  # Note: stats doesn't have to be a list.
                'type': 'Rho',
                'file_name': rho_file
            }
        },
    }
    piff.piffify(config, logger)
    assert os.path.isfile(rho_file)

    # repeat with plotify function
    os.remove(rho_file)
    piff.plotify(config, logger)
    assert os.path.isfile(rho_file)

    # Test rho statistics directly.
    min_sep = 1
    max_sep = 100
    bin_size = 0.1
    psf = piff.read(psf_file)
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)
    stats = piff.RhoStats(min_sep=min_sep, max_sep=max_sep, bin_size=bin_size)
    stats.compute(psf, orig_stars)

    rhos = [stats.rho1, stats.rho2, stats.rho3, stats.rho4, stats.rho5]
    for rho in rhos:
        # Test the range of separations
        radius = np.exp(rho.logr)
        np.testing.assert_array_less(radius, max_sep)
        np.testing.assert_array_less(min_sep, radius)
        # bin_size is reduced slightly to get integer number of bins
        assert rho.bin_size < bin_size
        assert np.isclose(rho.bin_size, bin_size, rtol=0.1)
        np.testing.assert_array_almost_equal(np.diff(rho.logr), rho.bin_size, decimal=5)

        # Test that the max absolute value of each rho isn't crazy
        np.testing.assert_array_less(np.abs(rho.xip), 1)

        # # Check that each rho isn't precisely zero. This means the sum of abs > 0
        np.testing.assert_array_less(0, np.sum(np.abs(rho.xip)))

    # Test using the piffify executable
    os.remove(rho_file)
    config['verbose'] = 0
    with open('rho.yaml','w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    piffify_exe = get_script_name('piffify')
    p = subprocess.Popen( [piffify_exe, 'rho.yaml'] )
    p.communicate()
    assert os.path.isfile(rho_file)

    # Test using the plotify executable
    os.remove(rho_file)
    plotify_exe = get_script_name('plotify')
    p = subprocess.Popen( [plotify_exe, 'rho.yaml'] )
    p.communicate()
    assert os.path.isfile(rho_file)

    # test running plotify with dir in config, with no logger, and with a modules specification.
    # (all to improve test coverage)
    config['output']['dir'] = '.'
    config['modules'] = [ 'custom_wcs' ]
    os.remove(rho_file)
    piff.plotify(config)
    assert os.path.isfile(rho_file)
示例#4
0
def test_single_image():
    """Test the simple case of one image and one catalog.
    """
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(
            log_file='output/test_single_image.log')

    # Make the image
    image = galsim.Image(2048, 2048, scale=0.26)

    # Where to put the stars.  Include some flagged and not used locations.
    x_list = [
        123.12, 345.98, 567.25, 1094.94, 924.15, 1532.74, 1743.11, 888.39,
        1033.29, 1409.31
    ]
    y_list = [
        345.43, 567.45, 1094.32, 924.29, 1532.92, 1743.83, 888.83, 1033.19,
        1409.20, 123.11
    ]
    flag_list = [1, 1, 13, 1, 1, 4, 1, 1, 0, 1]

    # Draw a Gaussian PSF at each location on the image.
    sigma = 1.3
    g1 = 0.23
    g2 = -0.17
    psf = galsim.Gaussian(sigma=sigma).shear(g1=g1, g2=g2)
    for x, y, flag in zip(x_list, y_list, flag_list):
        bounds = galsim.BoundsI(int(x - 31), int(x + 32), int(y - 31),
                                int(y + 32))
        offset = galsim.PositionD(x - int(x) - 0.5, y - int(y) - 0.5)
        psf.drawImage(image=image[bounds], method='no_pixel', offset=offset)
        # corrupt the ones that are marked as flagged
        if flag & 4:
            print('corrupting star at ', x, y)
            ar = image[bounds].array
            im_max = np.max(ar) * 0.2
            ar[ar > im_max] = im_max
    image.addNoise(
        galsim.GaussianNoise(rng=galsim.BaseDeviate(1234), sigma=1e-6))

    # Write out the image to a file
    image_file = os.path.join('output', 'simple_image.fits')
    image.write(image_file)

    # Write out the catalog to a file
    dtype = [('x', 'f8'), ('y', 'f8'), ('flag', 'i2')]
    data = np.empty(len(x_list), dtype=dtype)
    data['x'] = x_list
    data['y'] = y_list
    data['flag'] = flag_list
    cat_file = os.path.join('output', 'simple_cat.fits')
    fitsio.write(cat_file, data, clobber=True)

    # Use InputFiles to read these back in
    config = {'image_file_name': image_file, 'cat_file_name': cat_file}
    input = piff.InputFiles(config, logger=logger)
    assert input.image_file_name == [image_file]
    assert input.cat_file_name == [cat_file]

    # Check image
    assert input.nimages == 1
    image1, _, image_pos, _, _, _ = input.getRawImageData(0)
    np.testing.assert_equal(image1.array, image.array)

    # Check catalog
    np.testing.assert_equal([pos.x for pos in image_pos], x_list)
    np.testing.assert_equal([pos.y for pos in image_pos], y_list)

    # Repeat, using flag columns this time.
    config = {
        'image_file_name': image_file,
        'cat_file_name': cat_file,
        'flag_col': 'flag',
        'use_flag': '1',
        'skip_flag': '4',
        'stamp_size': 48
    }
    input = piff.InputFiles(config, logger=logger)
    assert input.nimages == 1
    _, _, image_pos, _, _, _ = input.getRawImageData(0)
    assert len(image_pos) == 7

    # Make star data
    orig_stars = input.makeStars()
    assert len(orig_stars) == 7
    assert orig_stars[0].image.array.shape == (48, 48)

    # Process the star data
    # can only compare to truth if include_pixel=False
    model = piff.Gaussian(fastfit=True, include_pixel=False)
    interp = piff.Mean()
    fitted_stars = [model.fit(model.initialize(star)) for star in orig_stars]
    interp.solve(fitted_stars)
    print('mean = ', interp.mean)

    # Check that the interpolation is what it should be
    # Any position would work here.
    chipnum = 0
    x = 1024
    y = 123
    orig_wcs = input.getWCS()[chipnum]
    orig_pointing = input.getPointing()
    image_pos = galsim.PositionD(x, y)
    world_pos = piff.StarData.calculateFieldPos(image_pos, orig_wcs,
                                                orig_pointing)
    u, v = world_pos.x, world_pos.y
    stamp_size = config['stamp_size']

    target = piff.Star.makeTarget(x=x,
                                  y=y,
                                  u=u,
                                  v=v,
                                  wcs=orig_wcs,
                                  stamp_size=stamp_size,
                                  pointing=orig_pointing)
    true_params = [sigma, g1, g2]
    test_star = interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Check default values of options
    psf = piff.SimplePSF(model, interp)
    assert psf.chisq_thresh == 0.1
    assert psf.max_iter == 30
    assert psf.outliers == None
    assert psf.extra_interp_properties == []

    # Now test running it via the config parser
    psf_file = os.path.join('output', 'simple_psf.fits')
    config = {
        'input': {
            'image_file_name': image_file,
            'cat_file_name': cat_file,
            'flag_col': 'flag',
            'use_flag': 1,
            'skip_flag': 4,
            'stamp_size': stamp_size
        },
        'psf': {
            'model': {
                'type': 'Gaussian',
                'fastfit': True,
                'include_pixel': False
            },
            'interp': {
                'type': 'Mean'
            },
            'max_iter': 10,
            'chisq_thresh': 0.2,
        },
        'output': {
            'file_name': psf_file
        },
    }
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)

    # Use a SimplePSF to process the stars data this time.
    interp = piff.Mean()
    psf = piff.SimplePSF(model, interp, max_iter=10, chisq_thresh=0.2)
    assert psf.chisq_thresh == 0.2
    assert psf.max_iter == 10

    psf.fit(orig_stars, wcs, pointing, logger=logger)
    test_star = psf.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # test that drawStar and drawStarList work
    test_star = psf.drawStar(target)
    test_star_list = psf.drawStarList([target])[0]
    np.testing.assert_equal(test_star.fit.params, test_star_list.fit.params)
    np.testing.assert_equal(test_star.image.array, test_star_list.image.array)

    # test copy_image property of drawStar and draw
    for draw in [psf.drawStar, psf.model.draw]:
        target_star_copy = psf.interp.interpolate(
            piff.Star(target.data.copy(), target.fit.copy()))
        # interp is so that when we do psf.model.draw we have fit.params to work with

        test_star_copy = draw(target_star_copy, copy_image=True)
        test_star_nocopy = draw(target_star_copy, copy_image=False)
        # if we modify target_star_copy, then test_star_nocopy should be modified,
        # but not test_star_copy
        target_star_copy.image.array[0, 0] = 23456
        assert test_star_nocopy.image.array[
            0, 0] == target_star_copy.image.array[0, 0]
        assert test_star_copy.image.array[0,
                                          0] != target_star_copy.image.array[0,
                                                                             0]
        # however the other pixels SHOULD still be all the same value
        assert test_star_nocopy.image.array[
            1, 1] == target_star_copy.image.array[1, 1]
        assert test_star_copy.image.array[1,
                                          1] == target_star_copy.image.array[1,
                                                                             1]

    # test that draw works
    test_image = psf.draw(x=target['x'],
                          y=target['y'],
                          stamp_size=config['input']['stamp_size'],
                          flux=target.fit.flux,
                          offset=target.fit.center)
    # this image should be the same values as test_star
    assert test_image == test_star.image
    # test that draw does not copy the image
    image_ref = psf.draw(x=target['x'],
                         y=target['y'],
                         stamp_size=config['input']['stamp_size'],
                         flux=target.fit.flux,
                         offset=target.fit.center,
                         image=test_image)
    image_ref.array[0, 0] = 123456789
    assert test_image.array[0, 0] == image_ref.array[0, 0]
    assert test_star.image.array[0, 0] != test_image.array[0, 0]
    assert test_star.image.array[1, 1] == test_image.array[1, 1]

    # Round trip to a file
    psf.write(psf_file, logger)
    psf2 = piff.read(psf_file, logger)
    assert type(psf2.model) is piff.Gaussian
    assert type(psf2.interp) is piff.Mean
    assert psf2.chisq == psf.chisq
    assert psf2.last_delta_chisq == psf.last_delta_chisq
    assert psf2.chisq_thresh == psf.chisq_thresh
    assert psf2.max_iter == psf.max_iter
    assert psf2.dof == psf.dof
    assert psf2.nremoved == psf.nremoved
    test_star = psf2.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Do the whole thing with the config parser
    os.remove(psf_file)

    piff.piffify(config, logger)
    psf3 = piff.read(psf_file)
    assert type(psf3.model) is piff.Gaussian
    assert type(psf3.interp) is piff.Mean
    assert psf3.chisq == psf.chisq
    assert psf3.last_delta_chisq == psf.last_delta_chisq
    assert psf3.chisq_thresh == psf.chisq_thresh
    assert psf3.max_iter == psf.max_iter
    assert psf3.dof == psf.dof
    assert psf3.nremoved == psf.nremoved
    test_star = psf3.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Test using the piffify executable
    os.remove(psf_file)
    # This would be simpler as a direct assignment, but this once, test the way you would set
    # this from the command line, which would call parse_variables.
    piff.config.parse_variables(config, ['verbose=0'], logger=logger)
    #config['verbose'] = 0
    with open('simple.yaml', 'w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    config2 = piff.config.read_config('simple.yaml')
    assert config == config2
    piffify_exe = get_script_name('piffify')
    p = subprocess.Popen([piffify_exe, 'simple.yaml'])
    p.communicate()
    psf4 = piff.read(psf_file)
    assert type(psf4.model) is piff.Gaussian
    assert type(psf4.interp) is piff.Mean
    assert psf4.chisq == psf.chisq
    assert psf4.last_delta_chisq == psf.last_delta_chisq
    assert psf4.chisq_thresh == psf.chisq_thresh
    assert psf4.max_iter == psf.max_iter
    assert psf4.dof == psf.dof
    assert psf4.nremoved == psf.nremoved
    test_star = psf4.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # With very low max_iter, we hit the warning about non-convergence
    config['psf']['max_iter'] = 1
    with CaptureLog(level=1) as cl:
        piff.piffify(config, cl.logger)
    assert 'PSF fit did not converge' in cl.output
示例#5
0
def test_des_image():
    """Test the whole process with a DES CCD.
    """
    import os
    import fitsio

    image_file = 'input/DECam_00241238_01.fits.fz'
    cat_file = 'input/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits'
    orig_image = galsim.fits.read(image_file)
    psf_file = os.path.join('output','pixel_des_psf.fits')

    if __name__ == '__main__':
        # These match what Gary used in fit_des.py
        nstars = None
        scale = 0.15
        size = 31
        order = 2
        nsigma = 4
    else:
        # These are faster and good enough for the unit tests.
        nstars = 25
        scale = 0.26
        size = 15
        order = 1
        nsigma = 1.  # This needs to be low to make sure we do test outlier rejection here.
    stamp_size = 25

    # The configuration dict with the right input fields for the file we're using.
    start_sigma = 1.0/2.355  # TODO: Need to make this automatic somehow.
    config = {
        'input' : {
            'nstars': nstars,
            'image_file_name' : image_file,
            'image_hdu' : 1,
            'weight_hdu' : 3,
            'badpix_hdu' : 2,
            'cat_file_name' : cat_file,
            'cat_hdu' : 2,
            'x_col' : 'XWIN_IMAGE',
            'y_col' : 'YWIN_IMAGE',
            'sky_col' : 'BACKGROUND',
            'stamp_size' : stamp_size,
            'ra' : 'TELRA',
            'dec' : 'TELDEC',
            'gain' : 'GAINA',
            # Test explicitly specifying the wcs (although it is the same here as what is in the
            # image anyway).
            'wcs' : {
                'type': 'Fits',
                'file_name': image_file
            }
        },
        'output' : {
            'file_name' : psf_file,
        },
        'psf' : {
            'model' : {
                'type' : 'PixelGrid',
                'scale' : scale,
                'size' : size,
                'interp' : 'Lanczos(5)',
                'start_sigma' : start_sigma,
            },
            'interp' : {
                'type' : 'BasisPolynomial',
                'order' : order,
            },
            'outliers' : {
                'type' : 'Chisq',
                'nsigma' : nsigma,
                'max_remove' : 3
            }
        },
    }
    if __name__ == '__main__':
        config['verbose'] = 2
    else:
        config['verbose'] = 0

    # These tests are slow, and it's really just doing the same thing three times, so
    # only do the first one when running via nosetests.
    if __name__ == '__main__':
        # Start by doing things manually:
        logger = piff.config.setup_logger(2)

        # Largely copied from Gary's fit_des.py, but using the Piff input_handler to
        # read the input files.
        stars, wcs, pointing = piff.Input.process(config['input'], logger=logger)
        if nstars is not None:
            stars = stars[:nstars]

        # Make model, force PSF centering
        model = piff.PixelGrid(scale=scale, size=size, interp=piff.Lanczos(3),
                               force_model_center=True, start_sigma=start_sigma,
                               logger=logger)

        # Interpolator will be zero-order polynomial.
        # Find u, v ranges
        interp = piff.BasisPolynomial(order=order, logger=logger)

        # Make a psf
        psf = piff.SimplePSF(model, interp)
        psf.fit(stars, wcs, pointing, logger=logger)

        # The difference between the images of the fitted stars and the originals should be
        # consistent with noise.  Keep track of how many don't meet that goal.
        n_bad = 0  # chisq/dof > 2
        n_marginal = 0  # chisq/dof > 1.1
        n_good = 0 # chisq/dof <= 1.1
        # Note: The 2 and 1.1 values here are very arbitrary!

        for s in psf.stars:
            fitted = psf.drawStar(s)
            orig_stamp = orig_image[fitted.image.bounds] - s['sky']
            fit_stamp = fitted.image

            x0 = int(s['x']+0.5)
            y0 = int(s['y']+0.5)
            b = galsim.BoundsI(x0-3,x0+3,y0-3,y0+3)
            #print('orig center = ',orig_stamp[b].array)
            #print('flux = ',orig_stamp.array.sum())
            #print('fit center = ',fit_stamp[b].array)
            #print('flux = ',fit_stamp.array.sum())
            flux = fitted.fit.flux
            #print('max diff/flux = ',np.max(np.abs(orig_stamp.array-fit_stamp.array))/flux)
            #np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2)
            weight = s.weight  # These should be 1/var_pix
            resid = fit_stamp - orig_stamp
            chisq = np.sum(resid.array**2 * weight.array)
            print('chisq = ',chisq)
            print('cf. star.chisq, dof = ',s.fit.chisq, s.fit.dof)
            assert abs(chisq - s.fit.chisq) < 1.e-3 * chisq
            if chisq > 2. * s.fit.dof:
                n_bad += 1
            elif chisq > 1.1 * s.fit.dof:
                n_marginal += 1
            else:
                n_good += 1

            # Check the convenience function that an end user would typically use
            offset = s.center_to_offset(s.fit.center)
            image = psf.draw(x=s['x'], y=s['y'], stamp_size=stamp_size,
                             flux=s.fit.flux, offset=offset)
            np.testing.assert_almost_equal(image.array, fit_stamp.array, decimal=4)

        print('n_good, marginal, bad = ',n_good,n_marginal,n_bad)
        # The real counts are 10 and 2.  So this says make sure any updates to the code don't make
        # things much worse.
        assert n_marginal <= 12
        assert n_bad <= 3

    # Use piffify function
    print('start piffify')
    piff.piffify(config)
    print('read stars')
    stars, wcs, pointing = piff.Input.process(config['input'])
    print('read psf')
    psf = piff.read(psf_file)
    stars = [psf.model.initialize(s) for s in stars]
    flux = stars[0].fit.flux
    offset = stars[0].center_to_offset(stars[0].fit.center)
    fit_stamp = psf.draw(x=stars[0]['x'], y=stars[0]['y'], stamp_size=stamp_size,
                         flux=flux, offset=offset)
    orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky']
    # The first star happens to be a good one, so go ahead and test the arrays directly.
    np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2)

    # Test using the piffify executable
    with open('pixel_des.yaml','w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    if __name__ == '__main__':
        if os.path.exists(psf_file):
            os.remove(psf_file)
        piffify_exe = get_script_name('piffify')
        print('start piffify executable')
        p = subprocess.Popen( [piffify_exe, 'pixel_des.yaml'] )
        p.communicate()
        print('read stars')
        stars, wcs, pointing = piff.Input.process(config['input'])
        print('read psf')
        psf = piff.read(psf_file)
        stars = [psf.model.initialize(s) for s in stars]
        flux = stars[0].fit.flux
        offset = stars[0].center_to_offset(stars[0].fit.center)
        fit_stamp = psf.draw(x=stars[0]['x'], y=stars[0]['y'], stamp_size=stamp_size,
                             flux=flux, offset=offset)
        orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky']
        np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2)
示例#6
0
def test_single_image():
    """Test the whole process with a single image.

    Note: This test is based heavily on test_single_image in test_simple.py.
    """
    import os
    import fitsio
    np_rng = np.random.RandomState(1234)

    # Make the image
    image = galsim.Image(2048, 2048, scale=0.2)

    # The (x,y) values will be on a grid 5 x 5 stars with a random sub-pixel offset.
    xvals = np.linspace(50., 1950., 5)
    yvals = np.linspace(50., 1950., 5)
    x_list, y_list = np.meshgrid(xvals, yvals)
    x_list = x_list.flatten()
    y_list = y_list.flatten()
    x_list = x_list + (np_rng.rand(len(x_list)) - 0.5)
    y_list = y_list + (np_rng.rand(len(x_list)) - 0.5)
    print('x_list = ',x_list)
    print('y_list = ',y_list)
    # Range of fluxes from 100 to 15000
    flux_list = 100. * np.exp(5. * np_rng.rand(len(x_list)))
    print('fluxes range from ',np.min(flux_list),np.max(flux_list))

    # Draw a Moffat PSF at each location on the image.
    # Have the truth values vary quadratically across the image.
    beta_fn = lambda x,y: 3.5 - 0.1*(x/1000) + 0.08*(y/1000)**2
    fwhm_fn = lambda x,y: 0.9 + 0.05*(x/1000) - 0.03*(y/1000) + 0.02*(x/1000)*(y/1000)
    e1_fn = lambda x,y: 0.02 - 0.01*(x/1000)
    e2_fn = lambda x,y: -0.03 + 0.02*(x/1000)**2 - 0.01*(y/1000)*2

    for x,y,flux in zip(x_list, y_list, flux_list):
        beta = beta_fn(x,y)
        fwhm = fwhm_fn(x,y)
        e1 = e1_fn(x,y)
        e2 = e2_fn(x,y)
        print(x,y,beta,fwhm,e1,e2)
        moffat = galsim.Moffat(fwhm=fwhm, beta=beta, flux=flux).shear(e1=e1, e2=e2)
        bounds = galsim.BoundsI(int(x-31), int(x+32), int(y-31), int(y+32))
        offset = galsim.PositionD( x-int(x)-0.5 , y-int(y)-0.5 )
        moffat.drawImage(image=image[bounds], offset=offset, method='no_pixel')
    print('drew image')

    # Add sky level and noise
    sky_level = 1000
    noise_sigma = 0.1  # Not much noise to keep this an easy test.
    image += sky_level
    image.addNoise(galsim.GaussianNoise(sigma=noise_sigma))

    # Write out the image to a file
    image_file = os.path.join('output','pixel_moffat_image.fits')
    image.write(image_file)
    print('wrote image')

    # Write out the catalog to a file
    dtype = [ ('x','f8'), ('y','f8') ]
    data = np.empty(len(x_list), dtype=dtype)
    data['x'] = x_list
    data['y'] = y_list
    cat_file = os.path.join('output','pixel_moffat_cat.fits')
    fitsio.write(cat_file, data, clobber=True)
    print('wrote catalog')

    # Use InputFiles to read these back in
    config = { 'image_file_name': image_file,
               'cat_file_name': cat_file,
               'stamp_size': 32,
               'noise' : noise_sigma**2,
               'sky' : sky_level,
             }
    input = piff.InputFiles(config)
    assert input.image_file_name == [image_file]
    assert input.cat_file_name == [cat_file]

    # Check image
    assert len(input.images) == 1
    np.testing.assert_equal(input.images[0].array, image.array)

    # Check catalog
    assert len(input.image_pos) == 1
    assert len(input.image_pos[0]) == len(x_list)
    np.testing.assert_equal([pos.x for pos in input.image_pos[0]], x_list)
    np.testing.assert_equal([pos.y for pos in input.image_pos[0]], y_list)

    # Make stars
    orig_stars = input.makeStars()
    assert len(orig_stars) == len(x_list)
    assert orig_stars[0].image.array.shape == (32,32)

    # Make a test star, not at the location of any of the model stars to use for each of the
    # below tests.
    x0 = 1024  # Some random position, not where a star was originally.
    y0 = 133
    beta = beta_fn(x0,y0)
    fwhm = fwhm_fn(x0,y0)
    e1 = e1_fn(x0,y0)
    e2 = e2_fn(x0,y0)
    moffat = galsim.Moffat(fwhm=fwhm, beta=beta).shear(e1=e1, e2=e2)
    target_star = piff.Star.makeTarget(x=x0, y=y0, scale=image.scale)
    test_im = galsim.ImageD(bounds=target_star.image.bounds, scale=image.scale)
    moffat.drawImage(image=test_im, method='no_pixel', use_true_center=False)
    print('made test star')

    if __name__ == '__main__':
        logger = piff.config.setup_logger(2)
        order = 2
    else:
        logger = None
        order = 1

    # These tests are slow, and it's really just doing the same thing three times, so
    # only do the first one when running via nosetests.
    psf_file = os.path.join('output','pixel_psf.fits')
    if __name__ == '__main__':
        # Process the star data
        model = piff.PixelGrid(0.2, 16, start_sigma=0.9/2.355)
        interp = piff.BasisPolynomial(order=order)
        pointing = None     # wcs is not Celestial here, so pointing needs to be None.
        psf = piff.SimplePSF(model, interp)
        psf.fit(orig_stars, {0:input.images[0].wcs}, pointing, logger=logger)

        # Check that the interpolation is what it should be
        print('target.flux = ',target_star.fit.flux)
        test_star = psf.drawStar(target_star)
        print('flux = ', test_im.array.sum(), test_star.image.array.sum())
        print('max diff = ',np.max(np.abs(test_star.image.array-test_im.array)))
        np.testing.assert_almost_equal(test_star.image.array/2, test_im.array/2, decimal=3)

        # Check the convenience function that an end user would typically use
        image = psf.draw(x=x0, y=y0)
        np.testing.assert_almost_equal(image.array/2, test_im.array/2, decimal=3)

        # Round trip through a file
        psf.write(psf_file, logger)
        psf = piff.read(psf_file, logger)
        assert type(psf.model) is piff.PixelGrid
        assert type(psf.interp) is piff.BasisPolynomial
        test_star = psf.drawStar(target_star)
        np.testing.assert_almost_equal(test_star.image.array/2, test_im.array/2, decimal=3)

        # Check the convenience function that an end user would typically use
        image = psf.draw(x=x0, y=y0)
        np.testing.assert_almost_equal(image.array/2., test_im.array/2., decimal=3)

    # Do the whole thing with the config parser
    config = {
        'input' : {
            'image_file_name' : image_file,
            'cat_file_name' : cat_file,
            'x_col' : 'x',
            'y_col' : 'y',
            'noise' : noise_sigma**2,
            'sky' : sky_level,
            'stamp_size' : 48  # Bigger than we drew, but should still work.
        },
        'output' : {
            'file_name' : psf_file
        },
        'psf' : {
            'model' : {
                'type' : 'PixelGrid',
                'scale' : 0.2,
                'size' : 16,  # Much smaller than the input stamps, but this is plenty here.
                'start_sigma' : 0.9/2.355
            },
            'interp' : {
                'type' : 'BasisPolynomial',
                'order' : order
            },
        },
    }
    if __name__ == '__main__':
        config['verbose'] = 2
    else:
        config['verbose'] = 0

    print("Running piffify function")
    piff.piffify(config)
    psf = piff.read(psf_file)
    test_star = psf.drawStar(target_star)
    print("Max abs diff = ",np.max(np.abs(test_star.image.array - test_im.array)))
    np.testing.assert_almost_equal(test_star.image.array/2., test_im.array/2., decimal=3)

    # Test using the piffify executable
    with open('pixel_moffat.yaml','w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    if __name__ == '__main__':
        print("Running piffify executable")
        if os.path.exists(psf_file):
            os.remove(psf_file)
        piffify_exe = get_script_name('piffify')
        p = subprocess.Popen( [piffify_exe, 'pixel_moffat.yaml'] )
        p.communicate()
        psf = piff.read(psf_file)
        test_star = psf.drawStar(target_star)
        np.testing.assert_almost_equal(test_star.image.array/2., test_im.array/2., decimal=3)

    # test copy_image property of drawStar and draw
    for draw in [psf.drawStar, psf.model.draw]:
        target_star_copy = psf.interp.interpolate(piff.Star(target_star.data.copy(), target_star.fit.copy()))  # interp is so that when we do psf.model.draw we have fit.params to work with

        test_star_copy = draw(target_star_copy, copy_image=True)
        test_star_nocopy = draw(target_star_copy, copy_image=False)
        # if we modify target_star_copy, then test_star_nocopy should be modified, but not test_star_copy
        target_star_copy.image.array[0,0] = 23456
        assert test_star_nocopy.image.array[0,0] == target_star_copy.image.array[0,0]
        assert test_star_copy.image.array[0,0] != target_star_copy.image.array[0,0]
        # however the other pixels SHOULD still be all the same value
        assert test_star_nocopy.image.array[1,1] == target_star_copy.image.array[1,1]
        assert test_star_copy.image.array[1,1] == target_star_copy.image.array[1,1]

    # check that drawing onto an image does not return a copy
    image = psf.draw(x=x0, y=y0)
    image_reference = psf.draw(x=x0, y=y0, image=image)
    image_reference.array[0,0] = 123456
    assert image.array[0,0] == image_reference.array[0,0]
示例#7
0
def test_des_image():
    """Test the whole process with a DES CCD.
    """
    import os
    import fitsio

    image_file = 'y1_test/DECam_00241238_01.fits.fz'
    cat_file = 'y1_test/DECam_00241238_01_psfcat_tb_maxmag_17.0_magcut_3.0_findstars.fits'
    orig_image = galsim.fits.read(image_file)
    psf_file = os.path.join('output', 'pixel_des_psf.fits')

    if __name__ == '__main__':
        # These match what Gary used in fit_des.py
        nstars = None
        scale = 0.15
        size = 41
    else:
        # These are faster and good enough for the unit tests.
        nstars = 25
        scale = 0.2
        size = 21
    stamp_size = 51

    # The configuration dict with the right input fields for the file we're using.
    start_sigma = 1.0 / 2.355  # TODO: Need to make this automatic somehow.
    config = {
        'input': {
            'images': image_file,
            'image_hdu': 1,
            'weight_hdu': 3,
            'badpix_hdu': 2,
            'cats': cat_file,
            'cat_hdu': 2,
            'x_col': 'XWIN_IMAGE',
            'y_col': 'YWIN_IMAGE',
            'sky_col': 'BACKGROUND',
            'stamp_size': stamp_size,
            'ra': 'TELRA',
            'dec': 'TELDEC',
            'gain': 'GAINA',
        },
        'output': {
            'file_name': psf_file,
        },
        'psf': {
            'model': {
                'type': 'PixelGrid',
                'scale': scale,
                'size': size,
                'start_sigma': start_sigma,
            },
            'interp': {
                'type': 'BasisPolynomial',
                'order': 2,
            },
        },
    }
    if __name__ == '__main__': config['verbose'] = 3

    # These tests are slow, and it's really just doing the same thing three times, so
    # only do the first one when running via nosetests.
    if True:
        # Start by doing things manually:
        if __name__ == '__main__':
            logger = piff.config.setup_logger(2)
        else:
            logger = None

        # Largely copied from Gary's fit_des.py, but using the Piff input_handler to
        # read the input files.
        stars, wcs, pointing = piff.Input.process(config['input'],
                                                  logger=logger)
        if nstars is not None:
            stars = stars[:nstars]

        # Make model, force PSF centering
        model = piff.PixelGrid(scale=scale,
                               size=size,
                               interp=piff.Lanczos(3),
                               force_model_center=True,
                               start_sigma=start_sigma,
                               logger=logger)

        # Interpolator will be zero-order polynomial.
        # Find u, v ranges
        interp = piff.BasisPolynomial(order=2, logger=logger)

        # Make a psf
        psf = piff.SimplePSF(model, interp)
        psf.fit(stars, wcs, pointing, logger=logger)

        # The difference between the images of the fitted stars and the originals should be
        # consistent with noise.  Keep track of how many don't meet that goal.
        n_bad = 0  # chisq/dof > 2
        n_marginal = 0  # chisq/dof > 1.1
        n_good = 0  # chisq/dof <= 1.1
        # Note: The 2 and 1.1 values here are very arbitrary!

        for s in psf.stars:
            fitted = psf.drawStar(s)
            orig_stamp = orig_image[fitted.image.bounds] - s['sky']
            fit_stamp = fitted.image

            x0 = int(s['x'] + 0.5)
            y0 = int(s['y'] + 0.5)
            b = galsim.BoundsI(x0 - 3, x0 + 3, y0 - 3, y0 + 3)
            #print('orig center = ',orig_stamp[b].array)
            #print('flux = ',orig_stamp.array.sum())
            #print('fit center = ',fit_stamp[b].array)
            #print('flux = ',fit_stamp.array.sum())
            flux = fitted.fit.flux
            #print('max diff/flux = ',np.max(np.abs(orig_stamp.array-fit_stamp.array))/flux)
            #np.testing.assert_almost_equal(fit_stamp.array/flux, orig_stamp.array/flux, decimal=2)
            weight = s.weight  # These should be 1/var_pix
            resid = fit_stamp - orig_stamp
            chisq = np.sum(resid.array**2 * weight.array)
            print('chisq = ', chisq)
            print('cf. star.chisq, dof = ', s.fit.chisq, s.fit.dof)
            assert abs(chisq - s.fit.chisq) < 1.e-3 * chisq
            if chisq > 2. * s.fit.dof:
                n_bad += 1
            elif chisq > 1.1 * s.fit.dof:
                n_marginal += 1
            else:
                n_good += 1

            # Check the convenience function that an end user would typically use
            offset = s.center_to_offset(s.fit.center)
            image = psf.draw(x=s['x'],
                             y=s['y'],
                             stamp_size=stamp_size,
                             flux=s.fit.flux,
                             offset=offset)
            np.testing.assert_almost_equal(image.array,
                                           fit_stamp.array,
                                           decimal=4)

        print('n_good, marginal, bad = ', n_good, n_marginal, n_bad)
        # The real counts are 10 and 2.  So this says make sure any updates to the code don't make
        # things much worse.
        assert n_marginal <= 12
        assert n_bad <= 3

    # Use piffify function
    if __name__ == '__main__':
        print('start piffify')
        piff.piffify(config)
        print('read stars')
        stars, wcs, pointing = piff.Input.process(config['input'])
        print('read psf')
        psf = piff.read(psf_file)
        stars = [psf.model.initialize(s) for s in stars]
        flux = stars[0].fit.flux
        offset = stars[0].center_to_offset(stars[0].fit.center)
        fit_stamp = psf.draw(x=stars[0]['x'],
                             y=stars[0]['y'],
                             stamp_size=stamp_size,
                             flux=flux,
                             offset=offset)
        orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky']
        # The first star happens to be a good one, so go ahead and test the arrays directly.
        np.testing.assert_almost_equal(fit_stamp.array / flux,
                                       orig_stamp.array / flux,
                                       decimal=2)

    # Test using the piffify executable
    config['verbose'] = 0
    with open('pixel_des.yaml', 'w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    if __name__ == '__main__':
        if os.path.exists(psf_file):
            os.remove(psf_file)
        piffify_exe = get_script_name('piffify')
        print('start piffify executable')
        p = subprocess.Popen([piffify_exe, 'pixel_des.yaml'])
        p.communicate()
        print('read stars')
        stars, wcs, pointing = piff.Input.process(config['input'])
        print('read psf')
        psf = piff.read(psf_file)
        stars = [psf.model.initialize(s) for s in stars]
        flux = stars[0].fit.flux
        offset = stars[0].center_to_offset(stars[0].fit.center)
        fit_stamp = psf.draw(x=stars[0]['x'],
                             y=stars[0]['y'],
                             stamp_size=stamp_size,
                             flux=flux,
                             offset=offset)
        orig_stamp = orig_image[stars[0].image.bounds] - stars[0]['sky']
        np.testing.assert_almost_equal(fit_stamp.array / flux,
                                       orig_stamp.array / flux,
                                       decimal=2)
示例#8
0
def test_single_image():
    """Test the whole process with a single image.

    Note: This test is based heavily on test_single_image in test_simple.py.
    """
    import os
    import fitsio
    np_rng = np.random.RandomState(1234)

    # Make the image
    image = galsim.Image(2048, 2048, scale=0.2)

    # The (x,y) values will be on a grid 5 x 5 stars with a random sub-pixel offset.
    xvals = np.linspace(50., 1950., 5)
    yvals = np.linspace(50., 1950., 5)
    x_list, y_list = np.meshgrid(xvals, yvals)
    x_list = x_list.flatten()
    y_list = y_list.flatten()
    x_list = x_list + (np_rng.rand(len(x_list)) - 0.5)
    y_list = y_list + (np_rng.rand(len(x_list)) - 0.5)
    print('x_list = ', x_list)
    print('y_list = ', y_list)
    # Range of fluxes from 100 to 15000
    flux_list = 100. * np.exp(5. * np_rng.rand(len(x_list)))
    print('fluxes range from ', np.min(flux_list), np.max(flux_list))

    # Draw a Moffat PSF at each location on the image.
    # Have the truth values vary quadratically across the image.
    beta_fn = lambda x, y: 3.5 - 0.1 * (x / 1000) + 0.08 * (y / 1000)**2
    fwhm_fn = lambda x, y: 0.9 + 0.05 * (x / 1000) - 0.03 * (
        y / 1000) + 0.02 * (x / 1000) * (y / 1000)
    e1_fn = lambda x, y: 0.02 - 0.01 * (x / 1000)
    e2_fn = lambda x, y: -0.03 + 0.02 * (x / 1000)**2 - 0.01 * (y / 1000) * 2

    for x, y, flux in zip(x_list, y_list, flux_list):
        beta = beta_fn(x, y)
        fwhm = fwhm_fn(x, y)
        e1 = e1_fn(x, y)
        e2 = e2_fn(x, y)
        print(x, y, beta, fwhm, e1, e2)
        moffat = galsim.Moffat(fwhm=fwhm, beta=beta, flux=flux).shear(e1=e1,
                                                                      e2=e2)
        bounds = galsim.BoundsI(int(x - 31), int(x + 32), int(y - 31),
                                int(y + 32))
        offset = galsim.PositionD(x - int(x) - 0.5, y - int(y) - 0.5)
        moffat.drawImage(image=image[bounds], offset=offset, method='no_pixel')
    print('drew image')

    # Write out the image to a file
    image_file = os.path.join('data', 'pixel_moffat_image.fits')
    image.write(image_file)
    print('wrote image')

    # Write out the catalog to a file
    dtype = [('x', 'f8'), ('y', 'f8')]
    data = np.empty(len(x_list), dtype=dtype)
    data['x'] = x_list
    data['y'] = y_list
    cat_file = os.path.join('data', 'pixel_moffat_cat.fits')
    fitsio.write(cat_file, data, clobber=True)
    print('wrote catalog')

    # Use InputFiles to read these back in
    input = piff.InputFiles(image_file, cat_file, stamp_size=32)
    assert input.image_files == [image_file]
    assert input.cat_files == [cat_file]
    assert input.x_col == 'x'
    assert input.y_col == 'y'

    # Check image
    input.readImages()
    assert len(input.images) == 1
    np.testing.assert_equal(input.images[0].array, image.array)

    # Check catalog
    input.readStarCatalogs()
    assert len(input.cats) == 1
    np.testing.assert_equal(input.cats[0]['x'], x_list)
    np.testing.assert_equal(input.cats[0]['y'], y_list)

    # Make stars
    orig_stars = input.makeStars()
    assert len(orig_stars) == len(x_list)
    assert orig_stars[0].image.array.shape == (32, 32)

    # Make a test star, not at the location of any of the model stars to use for each of the
    # below tests.
    x0 = 1024  # Some random position, not where a star was originally.
    y0 = 133
    beta = beta_fn(x0, y0)
    fwhm = fwhm_fn(x0, y0)
    e1 = e1_fn(x0, y0)
    e2 = e2_fn(x0, y0)
    moffat = galsim.Moffat(fwhm=fwhm, beta=beta).shear(e1=e1, e2=e2)
    target_star = piff.Star.makeTarget(x=x0, y=y0, scale=image.scale)
    test_im = galsim.ImageD(bounds=target_star.image.bounds, scale=image.scale)
    moffat.drawImage(image=test_im, method='no_pixel', use_true_center=False)
    print('made test star')

    # These tests are slow, and it's really just doing the same thing three times, so
    # only do the first one when running via nosetests.
    if True:
        # Process the star data
        model = piff.PixelGrid(0.2, 16, start_sigma=0.9 / 2.355)
        interp = piff.BasisPolynomial(order=2)
        if __name__ == '__main__':
            logger = piff.config.setup_logger(2)
        else:
            logger = None
        pointing = None  # wcs is not Celestial here, so pointing needs to be None.
        psf = piff.SimplePSF(model, interp)
        psf.fit(orig_stars, {0: input.images[0].wcs}, pointing, logger=logger)

        # Check that the interpolation is what it should be
        print('target.flux = ', target_star.fit.flux)
        test_star = psf.drawStar(target_star)
        #print('test_im center = ',test_im[b].array)
        #print('flux = ',test_im.array.sum())
        #print('interp_im center = ',test_star.image[b].array)
        #print('flux = ',test_star.image.array.sum())
        #print('max diff = ',np.max(np.abs(test_star.image.array-test_im.array)))
        np.testing.assert_almost_equal(test_star.image.array,
                                       test_im.array,
                                       decimal=3)

        # Check the convenience function that an end user would typically use
        image = psf.draw(x=x0, y=y0)
        np.testing.assert_almost_equal(image.array, test_im.array, decimal=3)

        # Round trip through a file
        psf_file = os.path.join('output', 'pixel_psf.fits')
        psf.write(psf_file, logger)
        psf = piff.read(psf_file, logger)
        assert type(psf.model) is piff.PixelGrid
        assert type(psf.interp) is piff.BasisPolynomial
        test_star = psf.drawStar(target_star)
        np.testing.assert_almost_equal(test_star.image.array,
                                       test_im.array,
                                       decimal=3)

        # Check the convenience function that an end user would typically use
        image = psf.draw(x=x0, y=y0)
        np.testing.assert_almost_equal(image.array, test_im.array, decimal=3)

    # Do the whole thing with the config parser
    config = {
        'input': {
            'images': image_file,
            'cats': cat_file,
            'x_col': 'x',
            'y_col': 'y',
            'stamp_size': 48  # Bigger than we drew, but should still work.
        },
        'output': {
            'file_name': psf_file
        },
        'psf': {
            'model': {
                'type': 'PixelGrid',
                'scale': 0.2,
                'size':
                16,  # Much smaller than the input stamps, but this is plenty here.
                'start_sigma': 0.9 / 2.355
            },
            'interp': {
                'type': 'BasisPolynomial',
                'order': 2
            },
        },
    }
    if __name__ == '__main__':
        print("Running piffify function")
        piff.piffify(config)
        psf = piff.read(psf_file)
        test_star = psf.drawStar(target_star)
        np.testing.assert_almost_equal(test_star.image.array,
                                       test_im.array,
                                       decimal=3)

    # Test using the piffify executable
    config['verbose'] = 0
    with open('pixel_moffat.yaml', 'w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    if __name__ == '__main__':
        print("Running piffify executable")
        if os.path.exists(psf_file):
            os.remove(psf_file)
        piffify_exe = get_script_name('piffify')
        p = subprocess.Popen([piffify_exe, 'pixel_moffat.yaml'])
        p.communicate()
        psf = piff.read(psf_file)
        test_star = psf.drawStar(target_star)
        np.testing.assert_almost_equal(test_star.image.array,
                                       test_im.array,
                                       decimal=3)
示例#9
0
def test_single_image():
    """Test the simple case of one image and one catalog.
    """
    # Make the image
    image = galsim.Image(2048, 2048, scale=0.26)

    # Where to put the stars.  Include some flagged and not used locations.
    x_list = [
        123.12, 345.98, 567.25, 1094.94, 924.15, 1532.74, 1743.11, 888.39,
        1033.29, 1409.31
    ]
    y_list = [
        345.43, 567.45, 1094.32, 924.29, 1532.92, 1743.83, 888.83, 1033.19,
        1409.20, 123.11
    ]
    flag_list = [0, 0, 12, 0, 0, 1, 0, 0, 0, 0]
    use_list = [1, 1, 1, 1, 1, 0, 1, 1, 0, 1]

    # Draw a Gaussian PSF at each location on the image.
    sigma = 1.3
    g1 = 0.23
    g2 = -0.17
    psf = galsim.Gaussian(sigma=sigma).shear(g1=g1, g2=g2)
    for x, y, flag, use in zip(x_list, y_list, flag_list, use_list):
        bounds = galsim.BoundsI(int(x - 31), int(x + 32), int(y - 31),
                                int(y + 32))
        offset = galsim.PositionD(x - int(x) - 0.5, y - int(y) - 0.5)
        psf.drawImage(image=image[bounds], method='no_pixel', offset=offset)
        # corrupt the ones that are marked as flagged
        if flag:
            print('corrupting star at ', x, y)
            ar = image[bounds].array
            im_max = np.max(ar) * 0.2
            ar[ar > im_max] = im_max
    image.addNoise(
        galsim.GaussianNoise(rng=galsim.BaseDeviate(1234), sigma=1e-6))

    # Write out the image to a file
    image_file = os.path.join('data', 'simple_image.fits')
    image.write(image_file)

    # Write out the catalog to a file
    dtype = [('x', 'f8'), ('y', 'f8'), ('flag', 'i2'), ('use', 'i2')]
    data = np.empty(len(x_list), dtype=dtype)
    data['x'] = x_list
    data['y'] = y_list
    data['flag'] = flag_list
    data['use'] = use_list
    cat_file = os.path.join('data', 'simple_cat.fits')
    fitsio.write(cat_file, data, clobber=True)

    # Use InputFiles to read these back in
    input = piff.InputFiles(image_file, cat_file)
    assert input.image_files == [image_file]
    assert input.cat_files == [cat_file]
    assert input.x_col == 'x'
    assert input.y_col == 'y'

    # Check image
    input.readImages()
    assert len(input.images) == 1
    np.testing.assert_equal(input.images[0].array, image.array)

    # Check catalog
    input.readStarCatalogs()
    assert len(input.cats) == 1
    np.testing.assert_equal(input.cats[0]['x'], x_list)
    np.testing.assert_equal(input.cats[0]['y'], y_list)

    # Repeat, using flag and use columns this time.
    input = piff.InputFiles(image_file,
                            cat_file,
                            flag_col='flag',
                            use_col='use',
                            stamp_size=48)
    assert input.flag_col == 'flag'
    assert input.use_col == 'use'
    input.readImages()
    input.readStarCatalogs()
    assert len(input.cats[0]) == 7

    # Make star data
    orig_stars = input.makeStars()
    assert len(orig_stars) == 7
    assert orig_stars[0].image.array.shape == (48, 48)

    # Process the star data
    # can only compare to truth if include_pixel=False
    model = piff.Gaussian(fastfit=True, include_pixel=False)
    interp = piff.Mean()
    fitted_stars = [model.fit(model.initialize(star)) for star in orig_stars]
    interp.solve(fitted_stars)
    print('mean = ', interp.mean)

    # Check that the interpolation is what it should be
    target = piff.Star.makeTarget(x=1024,
                                  y=123)  # Any position would work here.
    true_params = [sigma, g1, g2]
    test_star = interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Now test running it via the config parser
    psf_file = os.path.join('output', 'simple_psf.fits')
    config = {
        'input': {
            'images': image_file,
            'cats': cat_file,
            'flag_col': 'flag',
            'use_col': 'use',
            'stamp_size': 48
        },
        'psf': {
            'model': {
                'type': 'Gaussian',
                'fastfit': True,
                'include_pixel': False
            },
            'interp': {
                'type': 'Mean'
            },
        },
        'output': {
            'file_name': psf_file
        },
    }
    if __name__ == '__main__':
        logger = piff.config.setup_logger(verbose=2)
    else:
        logger = piff.config.setup_logger(verbose=0)
    orig_stars, wcs, pointing = piff.Input.process(config['input'], logger)

    # Use a SimplePSF to process the stars data this time.
    psf = piff.SimplePSF(model, interp)

    psf.fit(orig_stars, wcs, pointing, logger=logger)
    test_star = psf.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Round trip to a file
    psf.write(psf_file, logger)
    psf = piff.read(psf_file, logger)
    assert type(psf.model) is piff.Gaussian
    assert type(psf.interp) is piff.Mean
    test_star = psf.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Do the whole thing with the config parser
    os.remove(psf_file)

    piff.piffify(config, logger)
    psf = piff.read(psf_file)
    test_star = psf.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Test using the piffify executable
    os.remove(psf_file)
    config['verbose'] = 0
    with open('simple.yaml', 'w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    piffify_exe = get_script_name('piffify')
    p = subprocess.Popen([piffify_exe, 'simple.yaml'])
    p.communicate()
    psf = piff.read(psf_file)
    test_star = psf.interp.interpolate(target)
    np.testing.assert_almost_equal(test_star.fit.params,
                                   true_params,
                                   decimal=4)

    # Test that we can make rho statistics
    min_sep = 1
    max_sep = 100
    bin_size = 0.1
    stats = piff.RhoStats(min_sep=min_sep, max_sep=max_sep, bin_size=bin_size)
    stats.compute(psf, orig_stars)

    rhos = [stats.rho1, stats.rho2, stats.rho3, stats.rho4, stats.rho5]
    for rho in rhos:
        # Test the range of separations
        radius = np.exp(rho.logr)
        # last bin can be one bigger than max_sep
        np.testing.assert_array_less(radius,
                                     np.exp(np.log(max_sep) + bin_size))
        np.testing.assert_array_less(min_sep, radius)
        np.testing.assert_array_almost_equal(np.diff(rho.logr),
                                             bin_size,
                                             decimal=5)

        # Test that the max absolute value of each rho isn't crazy
        np.testing.assert_array_less(np.abs(rho.xip), 1)

        # # Check that each rho isn't precisely zero. This means the sum of abs > 0
        np.testing.assert_array_less(0, np.sum(np.abs(rho.xip)))

    # Test the plotting and writing
    rho_psf_file = os.path.join('output', 'simple_psf_rhostats.pdf')
    stats.write(rho_psf_file)

    # Test that we can make summary shape statistics, using HSM
    shapeStats = piff.ShapeHistogramsStats()
    shapeStats.compute(psf, orig_stars)

    # test their characteristics
    np.testing.assert_array_almost_equal(sigma, shapeStats.T, decimal=4)
    np.testing.assert_array_almost_equal(sigma, shapeStats.T_model, decimal=3)
    np.testing.assert_array_almost_equal(g1, shapeStats.g1, decimal=4)
    np.testing.assert_array_almost_equal(g1, shapeStats.g1_model, decimal=3)
    np.testing.assert_array_almost_equal(g2, shapeStats.g2, decimal=4)
    np.testing.assert_array_almost_equal(g2, shapeStats.g2_model, decimal=3)

    shape_psf_file = os.path.join('output', 'simple_psf_shapestats.pdf')
    shapeStats.write(shape_psf_file)

    # Test that we can use the config parser for both RhoStats and ShapeHistogramsStats
    config['output']['stats'] = [
        {
            'type': 'ShapeHistograms',
            'file_name': shape_psf_file
        },
        {
            'type': 'Rho',
            'file_name': rho_psf_file
        },
        {
            'type': 'TwoDHist',
            'file_name': os.path.join('output',
                                      'simple_psf_twodhiststats.pdf'),
            'number_bins_u': 3,
            'number_bins_v': 3,
        },
        {
            'type': 'TwoDHist',
            'file_name': os.path.join('output',
                                      'simple_psf_twodhiststats_std.pdf'),
            'reducing_function': 'np.std',
            'number_bins_u': 3,
            'number_bins_v': 3,
        },
    ]

    os.remove(psf_file)
    os.remove(rho_psf_file)
    os.remove(shape_psf_file)
    piff.piffify(config, logger)

    # Test using the piffify executable
    os.remove(psf_file)
    os.remove(rho_psf_file)
    os.remove(shape_psf_file)
    config['verbose'] = 0
    with open('simple.yaml', 'w') as f:
        f.write(yaml.dump(config, default_flow_style=False))
    p = subprocess.Popen([piffify_exe, 'simple.yaml'])
    p.communicate()