示例#1
0
    def test_exp6(self):
        v = pin.Motion.Zero()
        M = pin.exp6(v)
        self.assertTrue(M.isIdentity())

        M2 = pin.exp6(np.array(v))
        self.assertTrue(M2.isIdentity())
def jacobian_fd(dMocap, dOdom, bMm, eps=0.001):
    dM = np.zeros((6))
    err = error(dMocap, dOdom, bMm)
    J = np.zeros((err.shape[0], 6))
    for i in range(6):
        dM[i] = eps
        bMm2 = bMm * pinocchio.exp6(dM)
        err2 = error(dMocap, dOdom, bMm2)
        J[:, i] = (err2 - err) / eps
        dM[i] = 0.
    return J
    def f(self, x):
        self.x_arr.append(x)
        nu_c = x[:
                 6]  # currently estimated transfo as se3 6D vector representation
        nu_b = x[
            6:]  # currently estimated transfo as se3 6D vector representation
        cm_M_c = self.cm_M_c0 * pin.exp6(
            nu_c)  # currently estimated transfo as SE3 Lie group
        bm_M_b = self.cm_M_c0 * pin.exp6(
            nu_b)  # currently estimated transfo as SE3 Lie group
        b_M_bm = bm_M_b.inverse()
        res = np.zeros(self.N_res)
        for i in range(self.N):
            bm_M_cm = self.bm_M_cm_traj[i]
            c_M_b = self.c_M_b_cosy_traj[i]
            res[6 * i:6 * i + 6] = pin.log6(bm_M_cm * cm_M_c * c_M_b *
                                            b_M_bm).np

        self.cost_arr.append(np.linalg.norm(res))

        return res
def estimate(transforms, Tm):
    errs = [ pinocchio.log6(Tm.actInv(T)).vector for T in transforms ]
    v_mean = np.mean(errs, 0)
    v_var = np.var(errs, 0)
    Tm = Tm * pinocchio.exp6(pinocchio.Motion(v_mean))
    return Tm, v_var
示例#5
0
 def test_exp6(self):
     v = pin.Motion.Zero()
     m = pin.exp6(v)
     self.assertTrue(m.isIdentity())
示例#6
0
 def test_exp6(self):
     v = pin.Motion.Zero()
     m = pin.exp6(v)
     self.assertTrue(m.isIdentity())

if __name__ == '__main__':
    N = 1000
    dt = 0.01
    print('Tot seconds ', N * dt)

    t = np.arange(N)

    A = 0.5 * (np.random.random(6) - 0.5)
    f = 0.2 * (np.random.random(6) - 0.5)
    ft_arr = np.outer(t, f)
    nu_traj = A * np.sin(2 * np.pi * ft_arr)
    # nu_traj = A*(np.random.random((N,6)) - 0.5)

    m_M_c_traj = [pin.exp6(nu) for nu in nu_traj]  # moving camera
    m_M_b_traj = [pin.SE3.Identity() for _ in range(N)]  # resting object

    # cozy pose measurements
    c_M_b_cosy_traj = [
        m_M_c.inverse() * m_M_b
        for m_M_c, m_M_b in zip(m_M_c_traj, m_M_b_traj)
    ]

    # constant transformation to estimate
    cm_M_c = pin.SE3.Random()
    bm_M_b = pin.SE3.Random()
    c_M_cm = cm_M_c.inverse()
    b_M_bm = bm_M_b.inverse()

    # mocap measurements
def calibrate(measurements):
    """ compute maMmo """
    def err_jac(maMmo):
        err = []
        jac = []
        for maMb, moMb in measurements:
            M = maMb.inverse() * maMmo * moMb
            err.extend(pinocchio.log6(M).vector.tolist())
            jac.extend(
                np.dot(pinocchio.Jlog6(M),
                       moMb.toActionMatrixInverse()).tolist())
        return np.array(err), np.array(jac)

    maMmo = pinocchio.SE3.Identity()
    iter = 100
    ethr = 0.001
    Jthr = 0.001
    mthr = 1e-4

    def norm2(a):
        return np.sum(a**2)

    from numpy.linalg import norm

    while iter > 0:
        err, J = err_jac(maMmo)
        els = norm2(err)
        if norm(err) < ethr:
            print("Error is very small")
            break
        if norm(J) < Jthr:
            print("Jacobian is very small")
            break
        d, res, rank, s = np.linalg.lstsq(J, -err)
        # do line search on els = norm2(err), Jls = 2 * err^T * J
        # els(u) = norm2(err(q + u*d)) ~ els(0) + u * Jls * d
        Jls = 2 * np.dot(err, J)
        m = np.dot(Jls, d)
        if abs(m) < mthr:
            print("m is very small.", m)
            break
        assert m < 0, str(m) + " should be negative"
        alpha = 1.
        c = 0.1  # factor for the linear part
        rate = 0.5
        alphaDefault = None
        while True:
            maMmo2 = maMmo * pinocchio.exp6(alpha * d)
            err2, _ = err_jac(maMmo2)
            els2 = norm2(err2)
            if els2 < els + c * alpha * m:
                break
            if alphaDefault is None and els2 < els:
                alphaDefault = alpha
            alpha *= rate
            if alpha < 1e-5:
                if alphaDefault is None:
                    print(
                        "failed to find a alpha that makes the error decrease. m =",
                        m)
                    return maMmo
                print("failed to find correct alpha")
                alpha = alphaDefault
                maMmo2 = maMmo * pinocchio.exp6(alpha * d)
                break
        if iter % 10 == 0:
            print("{:4} {:^8} {:^8} {:^8} {:^8}".format(
                "iter", "err", "J", "d", "alpha"))
        print("{:4} {:8.5} {:8.5} {:8.5} {:8.5}".format(
            iter, np.sqrt(els2), norm(J), norm(d), alpha))
        maMmo = maMmo2
        iter -= 1
    return maMmo
def optimize(
    dMocap,
    dOdom,
    bMm=pinocchio.SE3.Identity(),
    iter=100,
    ethr=0.001,
    Jthr=0.001,
    mthr=1e-4,
    fd=False,
):
    def norm2(a):
        return np.sum(a**2)

    from numpy.linalg import norm
    err2 = None
    while iter > 0:
        err = error(dMocap, dOdom, bMm) if err2 is None else err2
        els = norm2(err) if err2 is None else els2
        if norm(err) < ethr:
            print("Error is very small")
            break
        if fd:
            J = jacobian_fd(dMocap, dOdom, bMm)
        else:
            J = jacobian(dMocap, dOdom, bMm)
        if norm(J) < Jthr:
            print("Jacobian is very small")
            break
        d, res, rank, s = np.linalg.lstsq(J, -err)
        # do line search on els = norm2(err), Jls = 2 * err^T * J
        # els(u) = norm2(err(q + u*d)) ~ els(0) + u * Jls * d
        Jls = 2 * np.dot(err, J)
        m = np.dot(Jls, d)
        if abs(m) < mthr:
            print("m is very small.", m)
            break
        assert m < 0, str(m) + " should be negative"
        alpha = 1.
        c = 0.1  # factor for the linear part
        rate = 0.5
        alphaDefault = None
        while True:
            bMm2 = bMm * pinocchio.exp6(alpha * d)
            err2 = error(dMocap, dOdom, bMm2)
            els2 = norm2(err2)
            if els2 < els + c * alpha * m:
                break
            if alphaDefault is None and els2 < els:
                alphaDefault = alpha
            alpha *= rate
            if alpha < 1e-5:
                if alphaDefault is None:
                    print(
                        "failed to find a alpha that makes the error decrease. m =",
                        m)
                    return bMm
                print("failed to find correct alpha")
                alpha = alphaDefault
                bMm2 = bMm * pinocchio.exp6(alpha * d)
                err2 = error(dMocap, dOdom, bMm2)
                els2 = norm2(err2)
                break
        if iter % 10 == 0:
            print("{:4} {:^8} {:^8} {:^8} {:^8}".format(
                "iter", "err", "J", "d", "alpha"))
        print("{:4} {:8.5} {:8.5} {:8.5} {:8.5}".format(
            iter, np.sqrt(els2), norm(J), norm(d), alpha))
        #bMm = bMm * pinocchio.exp6(d)
        bMm = bMm2
        iter -= 1
    return bMm
v2 = np.array([0.1, 0., 0., 0., 0., 0.3])
dt = 0.01
xReg = 1.
K = 5

dMocap = []
dOdom = []
for wMm, v in [
    (d0se3, v0),
    (d1se3, v1),
    (d2se3, v2),
]:
    for i in range(len(wMm) - K):
        if wMm[i + K] is None or wMm[i] is None: continue
        dMocap.append(wMm[i + K].inverse() * wMm[i])
        dOdom.append(pinocchio.exp6(K * v * dt))
subsample = 10
if subsample > 1:
    dMocap = dMocap[::10]
    dOdom = dOdom[::10]


def error(dMocap, dOdom, bMm):
    # x regularisation
    if xReg > 0:
        errs = (xReg * pinocchio.log6(bMm).vector).tolist()[2:5]
    else:
        errs = []
    assert len(dMocap) == len(dOdom)
    mMb = bMm.inverse()
    for dM, dO in zip(dMocap, dOdom):