def test_against_elementwise_transformation(self): # Test general case gives the same result as the elementwise case t1 = pints.IdentityTransformation(1) # This is element-wise t_elem = pints.ComposedTransformation(t1, self.t2, self.t3) self.assertTrue(t_elem.elementwise()) # This is element-wise # Test log-Jacobian determinant self.assertAlmostEqual(self.t.log_jacobian_det(self.x), t_elem.log_jacobian_det(self.x)) # Test log-Jacobian determinant derivatives _, t_deriv = self.t.log_jacobian_det_S1(self.x) _, t_elem_deriv = t_elem.log_jacobian_det_S1(self.x) self.assertTrue(np.allclose(t_deriv, t_elem_deriv))
def setUpClass(cls): # Create Transformation class cls.t1 = TestNonElementWiseIdentityTransformation(1) lower2 = np.array([1, 2]) upper2 = np.array([10, 20]) cls.t2 = pints.RectangularBoundariesTransformation(lower2, upper2) cls.t3 = pints.LogTransformation(1) cls.t = pints.ComposedTransformation(cls.t1, cls.t2, cls.t3) cls.p = [0.1, 1.5, 15., 999.] cls.x = [0.1, -2.8332133440562162, 0.9555114450274365, 6.9067547786485539] cls.j = np.diag([1., 0.4722222222222225, 3.6111111111111098, 999.]) cls.j_s1_diag = [0., 0.4197530864197533, -1.6049382716049378, 999.] cls.j_s1 = np.zeros((4, 4, 4)) for i in range(4): cls.j_s1[i, i, i] = cls.j_s1_diag[i] cls.log_j_det = 7.4404646962481324 cls.log_j_det_s1 = [0., 0.8888888888888888, -0.4444444444444445, 1.]
def inference(model, values, times): # Create an object with links to the model and time series problem = pints.SingleOutputProblem(model, times, values) # Create a log-likelihood function (adds an extra parameter!) log_likelihood = pints.GaussianLogLikelihood(problem) # Create a uniform prior over both the parameters and the new noise variable lower_bounds = np.array([1e-3, 0.0, 0.4, 0.1, 1e-6, 8.0, 1e-4]) upper_bounds = np.array([10.0, 0.4, 0.6, 100.0, 100e-6, 10.0, 0.2]) log_prior = pints.UniformLogPrior(lower_bounds, upper_bounds) # Create a posterior log-likelihood (log(likelihood * prior)) log_posterior = pints.LogPosterior(log_likelihood, log_prior) # Choose starting points for 3 mcmc chains # params = ['k0', 'E0', 'a', 'Ru', 'Cdl', 'freq', 'sigma'] start_parameters = np.array( [0.0101, 0.214, 0.53, 8.0, 20.0e-6, 9.0152, 0.01]) transform = pints.ComposedTransformation( pints.LogTransformation(1), pints.RectangularBoundariesTransformation(lower_bounds[1:], upper_bounds[1:]), ) sigma0 = [0.1 * (h - l) for l, h in zip(lower_bounds, upper_bounds)] boundaries = pints.RectangularBoundaries(lower_bounds, upper_bounds) found_parameters, found_value = pints.optimise(log_posterior, start_parameters, sigma0, boundaries, transform=transform, method=pints.CMAES) xs = [ found_parameters * 1.001, found_parameters * 1.002, found_parameters * 1.003, ] for x in xs: x[5] = found_parameters[5] print('start_parameters', start_parameters) print('found_parameters', found_parameters) print('lower_bounds', lower_bounds) print('upper_bounds', upper_bounds) # Create mcmc routine with four chains mcmc = pints.MCMCController(log_posterior, 3, xs, method=pints.HaarioBardenetACMC, transform=transform) # Add stopping criterion mcmc.set_max_iterations(10000) # Run! chains = mcmc.run() # Save chains for plotting and analysis pickle.dump((xs, pints.GaussianLogLikelihood, log_prior, chains, 'HaarioBardenetACMC'), open('results.pickle', 'wb'))