示例#1
0
 def check_against_processes_running(msg: MQTTMessage) -> None:
     job = msg.topic.split("/")[3]
     if (msg.payload.decode() in [self.READY, self.INIT, self.SLEEPING
                                  ]) and (not is_pio_job_running(job)):
         self.publish(
             f"pioreactor/{self.unit}/{latest_exp}/{job}/$state",
             self.LOST,
             retain=True,
         )
         self.logger.debug(f"Manually changing {job} state in MQTT.")
示例#2
0
    def latest_growth_rate(self) -> float:
        # check if None
        if self._latest_growth_rate is None:
            # this should really only happen on the initialization.
            self.logger.debug("Waiting for OD and growth rate data to arrive")
            if not is_pio_job_running("od_reading", "growth_rate_calculating"):
                raise exc.JobRequiredError(
                    "`od_reading` and `growth_rate_calculating` should be running."
                )

        # check most stale time
        if (time.time() - self.most_stale_time) > 5 * 60:
            raise exc.JobRequiredError(
                "readings are too stale (over 5 minutes old) - are `od_reading` and `growth_rate_calculating` running?"
            )

        return cast(float, self._latest_growth_rate)
    def get_precomputed_values(self) -> tuple:
        if self.ignore_cache:
            if not is_pio_job_running("od_reading"):
                self.logger.error("OD reading should be running. Stopping.")
                raise exc.JobRequiredError("OD reading should be running. Stopping.")

            self.logger.info(
                "Computing OD normalization metrics. This may take a few minutes"
            )
            od_normalization_factors, od_variances = od_normalization(
                unit=self.unit, experiment=self.experiment
            )
            self.logger.info("Completed OD normalization metrics.")
            initial_growth_rate = 0.0
            initial_od = 1.0
        else:
            od_normalization_factors = self.get_od_normalization_from_cache()
            od_variances = self.get_od_variances_from_cache()
            initial_growth_rate = self.get_growth_rate_from_cache()
            initial_od = self.get_previous_od_from_cache()

        initial_acc = 0
        od_blank = self.get_od_blank_from_cache()

        # what happens if od_blank is near / less than od_normalization_factors?
        # this means that the inoculant had near 0 impact on the turbidity => very dilute.
        # I think we should not use od_blank if so
        for channel in od_normalization_factors.keys():
            if od_normalization_factors[channel] * 0.95 < od_blank[channel]:
                self.logger.debug(
                    "Resetting od_blank because it is too close to current observations."
                )
                od_blank[channel] = od_normalization_factors[channel] * 0.95

        return (
            initial_growth_rate,
            initial_od,
            od_normalization_factors,
            od_variances,
            od_blank,
            initial_acc,
        )
示例#4
0
def click_self_test(k: str) -> int:
    """
    Test the input/output in the Pioreactor
    """
    import sys

    unit = get_unit_name()
    testing_experiment = get_latest_testing_experiment_name()
    experiment = get_latest_experiment_name()
    logger = create_logger("self_test", unit=unit, experiment=experiment)

    with publish_ready_to_disconnected_state(unit, testing_experiment, "self_test"):

        if is_pio_job_running("od_reading", "temperature_automation", "stirring"):
            logger.error(
                "Make sure Optical Density, Temperature Automation, and Stirring are off before running a self test. Exiting."
            )
            return 1

        functions_to_test = [
            (name, f)
            for (name, f) in vars(sys.modules[__name__]).items()
            if name.startswith("test_")
        ]  # automagically finds the test_ functions.
        if k:
            functions_to_test = [
                (name, f) for (name, f) in functions_to_test if (k in name)
            ]

        # clear the mqtt cache
        for name, _ in functions_to_test:
            publish(
                f"pioreactor/{unit}/{testing_experiment}/self_test/{name}",
                None,
                retain=True,
            )

        count_tested: int = 0
        count_passed: int = 0
        for name, test in functions_to_test:

            try:
                test(logger, unit, testing_experiment)
            except Exception:
                import traceback

                traceback.print_exc()

                res = False
            else:
                res = True

            logger.debug(f"{name}: {'✅' if res else '❌'}")

            count_tested += 1
            count_passed += res

            publish(
                f"pioreactor/{unit}/{testing_experiment}/self_test/{name}",
                int(res),
                retain=True,
            )

        publish(
            f"pioreactor/{unit}/{testing_experiment}/self_test/all_tests_passed",
            int(count_passed == count_tested),
            retain=True,
        )

        if count_passed == count_tested:
            logger.info("All tests passed ✅")
        else:
            logger.info(
                f"{count_tested-count_passed} failed test{'s' if (count_tested-count_passed) > 1 else ''}."
            )

        return int(count_passed != count_tested)
示例#5
0
def backup_database(output_file: str) -> None:
    """
    This action will create a backup of the SQLite3 database into specified output. It then
    will try to copy the backup to any available worker Pioreactors as a further backup.

    This job actually consumes _a lot_ of resources, and I've seen the LED output
    drop due to this running. See issue #81. For now, we will skip the backup if `od_reading` is running

    Elsewhere, a cronjob is set up as well to run this action every N days.
    """

    import sqlite3
    from sh import ErrorReturnCode, rsync  # type: ignore

    unit = get_unit_name()
    experiment = UNIVERSAL_EXPERIMENT

    with publish_ready_to_disconnected_state(unit, experiment,
                                             "backup_database"):

        logger = create_logger("backup_database",
                               experiment=experiment,
                               unit=unit)

        if is_pio_job_running("od_reading"):
            logger.warning("Won't run if OD Reading is running. Exiting")
            return

        def progress(status: int, remaining: int, total: int) -> None:
            logger.debug(f"Copied {total-remaining} of {total} SQLite3 pages.")
            logger.debug(f"Writing to local backup {output_file}.")

        logger.debug(f"Starting backup of database to {output_file}")
        sleep(
            1
        )  # pause a second so the log entry above gets recorded into the DB.

        con = sqlite3.connect(config.get("storage", "database"))
        bck = sqlite3.connect(output_file)

        with bck:
            con.backup(bck, pages=-1, progress=progress)

        bck.close()
        con.close()

        with local_persistant_storage("database_backups") as cache:
            cache["latest_backup_timestamp"] = current_utc_time()

        logger.info("Completed backup of database.")

        n_backups = config.getint("number_of_backup_replicates_to_workers",
                                  fallback=2)
        backups_complete = 0
        available_workers = list(get_active_workers_in_inventory())

        while (backups_complete < n_backups) and (len(available_workers) > 0):
            backup_unit = available_workers.pop()
            if backup_unit == get_unit_name():
                continue

            try:
                rsync(
                    "-hz",
                    "--partial",
                    "--inplace",
                    output_file,
                    f"{backup_unit}:{output_file}",
                )
            except ErrorReturnCode:
                logger.debug(
                    f"Unable to backup database to {backup_unit}. Is it online?",
                    exc_info=True,
                )
                logger.warning(
                    f"Unable to backup database to {backup_unit}. Is it online?"
                )
            else:
                logger.debug(
                    f"Backed up database to {backup_unit}:{output_file}.")
                backups_complete += 1

        return
示例#6
0
def od_normalization(
    unit: str,
    experiment: str,
    n_samples: int = 35
) -> tuple[dict[PdChannel, float], dict[PdChannel, float]]:
    from statistics import mean, variance

    action_name = "od_normalization"
    logger = create_logger(action_name)
    logger.debug("Starting OD normalization.")

    with publish_ready_to_disconnected_state(unit, experiment, action_name):

        if (not (is_pio_job_running("od_reading"))
                # but if test mode, ignore
                and not is_testing_env()):
            logger.error(
                " OD Reading should be running. Run OD Reading first. Exiting."
            )
            raise exc.JobRequiredError(
                "OD Reading should be running. Run OD Reading first. Exiting.")

        # TODO: write tests for this
        def yield_from_mqtt() -> Generator[dict, None, None]:
            while True:
                msg = pubsub.subscribe(
                    f"pioreactor/{unit}/{experiment}/od_reading/od_raw_batched",
                    allow_retained=False,
                )
                if msg is None:
                    continue

                yield json.loads(msg.payload)

        signal = yield_from_mqtt()
        readings = defaultdict(list)

        for count, batched_reading in enumerate(signal, start=1):
            for (sensor, reading) in batched_reading["od_raw"].items():
                readings[sensor].append(reading["voltage"])

            pubsub.publish(
                f"pioreactor/{unit}/{experiment}/{action_name}/percent_progress",
                count // n_samples * 100,
            )
            logger.debug(f"Progress: {count/n_samples:.0%}")
            if count == n_samples:
                break

        variances = {}
        means = {}
        autocorrelations = {}  # lag 1

        for sensor, od_reading_series in readings.items():
            variances[sensor] = variance(
                residuals_of_simple_linear_regression(list(
                    range(n_samples)), od_reading_series))  # see issue #206
            means[sensor] = mean(od_reading_series)
            autocorrelations[sensor] = correlation(od_reading_series[:-1],
                                                   od_reading_series[1:])

        with local_persistant_storage("od_normalization_mean") as cache:
            cache[experiment] = json.dumps(means)

        with local_persistant_storage("od_normalization_variance") as cache:
            cache[experiment] = json.dumps(variances)

        logger.debug(f"measured mean: {means}")
        logger.debug(f"measured variances: {variances}")
        logger.debug(f"measured autocorrelations: {autocorrelations}")
        logger.debug("OD normalization finished.")

        if config.getboolean(
                "data_sharing_with_pioreactor",
                "send_od_statistics_to_Pioreactor",
                fallback=False,
        ):

            add_on = {
                "ir_intensity": config["od_config"]["ir_intensity"],
            }

            pubsub.publish_to_pioreactor_cloud(
                "od_normalization_variance",
                json={
                    **variances,
                    **add_on,
                },  # TODO: this syntax changed in a recent python version...
            )
            pubsub.publish_to_pioreactor_cloud(
                "od_normalization_mean",
                json={
                    **means,
                    **add_on
                },
            )

        return means, variances
示例#7
0
def od_blank(
    od_angle_channel1,
    od_angle_channel2,
    n_samples: int = 30,
):
    """
    Compute the sample average of the photodiodes attached.

    Note that because of the sensitivity of the growth rate (and normalized OD) to the starting values,
    we need a very accurate estimate of these statistics.

    """
    from statistics import mean, variance

    action_name = "od_blank"
    logger = create_logger(action_name)
    unit = get_unit_name()
    experiment = get_latest_experiment_name()
    testing_experiment = get_latest_testing_experiment_name()
    logger.info(
        "Starting reading of blank OD. This will take about a few minutes.")

    with publish_ready_to_disconnected_state(unit, experiment, action_name):

        # running this will mess with OD Reading - best to just not let it happen.
        if (is_pio_job_running("od_reading")
                # but if test mode, ignore
                and not is_testing_env()):
            logger.error(
                "od_reading should not be running. Stop od_reading first. Exiting."
            )
            return

        # turn on stirring if not already on
        if not is_pio_job_running("stirring"):
            # start stirring
            st = start_stirring(
                target_rpm=config.getint("stirring", "target_rpm"),
                unit=unit,
                experiment=testing_experiment,
            )
            st.block_until_rpm_is_close_to_target()
        else:
            # TODO: it could be paused, we should make sure it's running
            ...

        sampling_rate = 1 / config.getfloat("od_config", "samples_per_second")

        # start od_reading
        start_od_reading(
            od_angle_channel1,
            od_angle_channel2,
            sampling_rate=sampling_rate,
            unit=unit,
            experiment=testing_experiment,
            fake_data=is_testing_env(),
        )

        def yield_from_mqtt():
            while True:
                msg = pubsub.subscribe(
                    f"pioreactor/{unit}/{testing_experiment}/od_reading/od_raw_batched"
                )
                yield json.loads(msg.payload)

        signal = yield_from_mqtt()
        readings = defaultdict(list)

        for count, batched_reading in enumerate(signal, start=1):
            for (channel, reading) in batched_reading["od_raw"].items():
                readings[channel].append(reading["voltage"])

            pubsub.publish(
                f"pioreactor/{unit}/{experiment}/{action_name}/percent_progress",
                count // n_samples * 100,
            )
            logger.debug(f"Progress: {count/n_samples:.0%}")
            if count == n_samples:
                break

        means = {}
        variances = {}
        autocorrelations = {}  # lag 1

        for channel, od_reading_series in readings.items():
            # measure the mean and publish. The mean will be used to normalize the readings in downstream jobs
            means[channel] = mean(od_reading_series)
            variances[channel] = variance(od_reading_series)
            autocorrelations[channel] = correlation(od_reading_series[:-1],
                                                    od_reading_series[1:])

            # warn users that a blank is 0 - maybe this should be an error instead? TODO: link this to a docs page.
            if means[channel] == 0.0:
                logger.warning(
                    f"OD reading for PD Channel {channel} is 0.0 - that shouldn't be. Is there a loose connection, or an extra channel in the configuration's [od_config.photodiode_channel] section?"
                )

            pubsub.publish(
                f"pioreactor/{unit}/{experiment}/od_blank/{channel}",
                json.dumps({
                    "timestamp": current_utc_time(),
                    "od_reading_v": means[channel]
                }),
            )

        # store locally as the source of truth.
        with local_persistant_storage(action_name) as cache:
            cache[experiment] = json.dumps(means)

        # publish to UI and database
        pubsub.publish(
            f"pioreactor/{unit}/{experiment}/{action_name}/mean",
            json.dumps(means),
            qos=pubsub.QOS.AT_LEAST_ONCE,
            retain=True,
        )

        if config.getboolean(
                "data_sharing_with_pioreactor",
                "send_od_statistics_to_Pioreactor",
                fallback=False,
        ):
            to_share = {"mean": means, "variance": variances}
            to_share["ir_intensity"] = config["od_config"]["ir_intensity"]
            to_share["od_angle_channel1"] = od_angle_channel1
            to_share["od_angle_channel2"] = od_angle_channel2
            pubsub.publish_to_pioreactor_cloud("od_blank_mean", json=to_share)

        logger.debug(f"measured mean: {means}")
        logger.debug(f"measured variances: {variances}")
        logger.debug(f"measured autocorrelations: {autocorrelations}")
        logger.debug("OD normalization finished.")

        return means
示例#8
0
def stirring_calibration(min_dc: int, max_dc: int) -> None:

    unit = get_unit_name()
    experiment = get_latest_testing_experiment_name()
    action_name = "stirring_calibration"
    logger = create_logger(action_name)

    with publish_ready_to_disconnected_state(unit, experiment, action_name):

        logger.info("Starting stirring calibration.")

        if is_pio_job_running("stirring"):
            logger.error(
                "Make sure Stirring job is off before running stirring calibration. Exiting."
            )
            return

        measured_rpms = []

        # go up and down to observe any hystersis.
        dcs = (list(range(max_dc, min_dc, -3)) +
               list(range(min_dc, max_dc, 4)) +
               list(range(max_dc, min_dc, -5)))

        with stirring.RpmFromFrequency() as rpm_calc, stirring.Stirrer(
                target_rpm=0,
                unit=unit,
                experiment=experiment,
                rpm_calculator=None,
        ) as st:

            st.duty_cycle = dcs[0]
            st.start_stirring()
            time.sleep(8)
            n_samples = len(dcs)

            for count, dc in enumerate(dcs, start=1):
                st.set_duty_cycle(dc)
                time.sleep(8)
                rpm = rpm_calc(4)
                measured_rpms.append(rpm)
                logger.debug(f"Detected {rpm=} RPM @ {dc=}%")

                # log progress
                publish(
                    f"pioreactor/{unit}/{experiment}/{action_name}/percent_progress",
                    count / n_samples * 100,
                )
                logger.debug(f"Progress: {count/n_samples:.0%}")

        publish_to_pioreactor_cloud(action_name,
                                    json=dict(zip(dcs, measured_rpms)))
        logger.debug(list(zip(dcs, measured_rpms)))

        # drop any 0 in RPM, too little DC
        try:
            filtered_dcs, filtered_measured_rpms = zip(
                *filter(lambda d: d[1] > 0, zip(dcs, measured_rpms)))
        except ValueError:
            # the above can fail if all measured rpms are 0
            logger.error("No RPMs were measured. Is the stirring spinning?")
            return

        # since in practice, we want a look up from RPM -> required DC, we
        # set x=measure_rpms, y=dcs
        (rpm_coef, rpm_coef_std), (intercept,
                                   intercept_std) = simple_linear_regression(
                                       filtered_measured_rpms, filtered_dcs)
        logger.debug(
            f"{rpm_coef=}, {rpm_coef_std=}, {intercept=}, {intercept_std=}")

        if rpm_coef <= 0:
            logger.warning(
                "Something went wrong - detected negative correlation between RPM and stirring."
            )
            return

        if intercept <= 0:
            logger.warning(
                "Something went wrong - the intercept should be greater than 0."
            )
            return

        with local_persistant_storage(action_name) as cache:
            cache["linear_v1"] = json.dumps({
                "rpm_coef": rpm_coef,
                "intercept": intercept,
                "timestamp": current_utc_time(),
            })
            cache["stirring_calibration_data"] = json.dumps({
                "timestamp":
                current_utc_time(),
                "data": {
                    "dcs": dcs,
                    "measured_rpms": measured_rpms
                },
            })