示例#1
0
    def __init__(self,
                 name=None,
                 max_iter=100,
                 batch_size=-1,
                 secure_aggregate=True,
                 aggregate_every_n_epoch=1,
                 early_stop="diff",
                 encode_label=False,
                 predict_param=None,
                 cv_param=None,
                 **kwargs):

        explicit_parameters = kwargs["explict_parameters"]
        explicit_parameters["optimizer"] = None
        explicit_parameters["loss"] = None
        explicit_parameters["metrics"] = None
        explicit_parameters["nn_define"] = None
        explicit_parameters["config_type"] = "keras"
        Component.__init__(self, **explicit_parameters)

        if "name" in explicit_parameters:
            del explicit_parameters["name"]
        for param_key, param_value in explicit_parameters.items():
            setattr(self, param_key, param_value)

        self.optimizer = None
        self.loss = None
        self.metrics = None
        self.nn_define = None
        self.config_type = "keras"
        self.input = Input(self.name, data_type="multi")
        self.output = Output(self.name, data_type='single')
        self._module_name = "HomoNN"
        self._model = Sequential()
示例#2
0
    def __init__(self,
                 epochs=1,
                 batch_size=-1,
                 encrypt_param=None,
                 predict_param=None,
                 cv_param=None,
                 intersect_param={'intersect_method': consts.RSA},
                 validation_freqs=None,
                 early_stopping_rounds=None,
                 use_first_metric_only=None,
                 mode='plain',
                 communication_efficient=False,
                 n_iter_no_change=False,
                 tol=1e-5,
                 local_round=5,
                 **kwargs):

        explicit_parameters = kwargs["explict_parameters"]
        explicit_parameters["optimizer"] = None
        # explicit_parameters["loss"] = None
        # explicit_parameters["metrics"] = None
        explicit_parameters["nn_define"] = None
        explicit_parameters["config_type"] = "keras"
        FateComponent.__init__(self, **explicit_parameters)

        if "name" in explicit_parameters:
            del explicit_parameters["name"]
        for param_key, param_value in explicit_parameters.items():
            setattr(self, param_key, param_value)

        self.input = Input(self.name, data_type="multi")
        self.output = Output(self.name, data_type='single')
        self._module_name = "FTL"
        self.optimizer = None
        self.loss = None
        self.config_type = "keras"
        self.metrics = None
        self.bottom_nn_define = None
        self.top_nn_define = None
        self.interactive_layer_define = None
        self._nn_model = Sequential()
        self.nn_define = None
示例#3
0
class HomoNN(Component):
    @extract_explicit_parameter
    def __init__(self,
                 name=None,
                 max_iter=100,
                 batch_size=-1,
                 secure_aggregate=True,
                 aggregate_every_n_epoch=1,
                 early_stop="diff",
                 encode_label=False,
                 predict_param=None,
                 cv_param=None,
                 **kwargs):

        explicit_parameters = kwargs["explict_parameters"]
        explicit_parameters["optimizer"] = None
        explicit_parameters["loss"] = None
        explicit_parameters["metrics"] = None
        explicit_parameters["nn_define"] = None
        explicit_parameters["config_type"] = "keras"
        Component.__init__(self, **explicit_parameters)

        if "name" in explicit_parameters:
            del explicit_parameters["name"]
        for param_key, param_value in explicit_parameters.items():
            setattr(self, param_key, param_value)

        self.optimizer = None
        self.loss = None
        self.metrics = None
        self.nn_define = None
        self.config_type = "keras"
        self.input = Input(self.name, data_type="multi")
        self.output = Output(self.name, data_type='single')
        self._module_name = "HomoNN"
        self._model = Sequential()

    def set_model(self, model):
        self._model = model

    def add(self, layer):
        self._model.add(layer)
        return self

    def compile(self, optimizer, loss=None, metrics=None):
        if metrics and not isinstance(metrics, list):
            raise ValueError("metrics should be a list")

        self.optimizer = self._model.get_optimizer_config(optimizer)
        self.loss = self._model.get_loss_config(loss)
        self.metrics = metrics
        self.config_type = self._model.get_layer_type()
        self.nn_define = self._model.get_network_config()
        return self

    def __getstate__(self):
        state = dict(self.__dict__)
        del state["_model"]

        return state
示例#4
0
    def __init__(self, task_type="classification", epochs=None, batch_size=-1, early_stop="diff",
                 tol=1e-5, encrypt_param=None, predict_param=None, cv_param=None, interactive_layer_lr=0.1,
                 validation_freqs=None, early_stopping_rounds=None, use_first_metric_only=None,
                 floating_point_precision=23, drop_out_keep_rate=1, selector_param=None, **kwargs):

        explicit_parameters = kwargs["explict_parameters"]
        explicit_parameters["optimizer"] = None
        explicit_parameters["bottom_nn_define"] = None
        explicit_parameters["top_nn_define"] = None
        explicit_parameters["interactive_layer_define"] = None
        explicit_parameters["config_type"] = "keras"
        FateComponent.__init__(self, **explicit_parameters)

        if "name" in explicit_parameters:
            del explicit_parameters["name"]
        for param_key, param_value in explicit_parameters.items():
            setattr(self, param_key, param_value)

        self.input = Input(self.name, data_type="multi")
        self.output = Output(self.name, data_type='single')
        self._module_name = "HeteroNN"
        self.optimizer = None
        self.config_type = "keras"
        self.bottom_nn_define = None
        self.top_nn_define = None
        self.interactive_layer_define = None
        self._bottom_nn_model = Sequential()
        self._interactive_layer = Sequential()
        self._top_nn_model = Sequential()
示例#5
0
文件: hetero_nn.py 项目: zpskt/FATE
    def add_top_model(self, layer):
        if not hasattr(self, "_top_nn_model"):
            setattr(self, "_top_nn_model", Sequential())

        self._top_nn_model.add(layer)
示例#6
0
文件: hetero_nn.py 项目: zpskt/FATE
    def set_interactve_layer(self, layer):
        if not hasattr(self, "_interactive_layer"):
            setattr(self, "_interactive_layer", Sequential())

        self._interactive_layer.add(layer)
示例#7
0
文件: hetero_nn.py 项目: zpskt/FATE
    def add_bottom_model(self, layer):
        if not hasattr(self, "_bottom_nn_model"):
            setattr(self, "_bottom_nn_model", Sequential())

        self._bottom_nn_model.add(layer)
示例#8
0
文件: hetero_nn.py 项目: zpskt/FATE
class HeteroNN(Component):
    @extract_explicit_parameter
    def __init__(self,
                 task_type="classification",
                 epochs=None,
                 batch_size=-1,
                 early_stop="diff",
                 tol=1e-5,
                 encrypt_param=None,
                 predict_param=None,
                 cv_param=None,
                 interactive_layer_lr=0.1,
                 validation_freqs=None,
                 early_stopping_rounds=None,
                 use_first_metric_only=None,
                 **kwargs):

        explicit_parameters = kwargs["explict_parameters"]
        explicit_parameters["optimizer"] = None
        explicit_parameters["loss"] = None
        explicit_parameters["metrics"] = None
        explicit_parameters["bottom_nn_define"] = None
        explicit_parameters["top_nn_define"] = None
        explicit_parameters["interactive_layer_define"] = None
        explicit_parameters["config_type"] = "keras"
        Component.__init__(self, **explicit_parameters)

        if "name" in explicit_parameters:
            del explicit_parameters["name"]
        for param_key, param_value in explicit_parameters.items():
            setattr(self, param_key, param_value)

        self.input = Input(self.name, data_type="multi")
        self.output = Output(self.name, data_type='single')
        self._module_name = "HeteroNN"
        self.optimizer = None
        self.loss = None
        self.config_type = "keras"
        self.metrics = None
        self.bottom_nn_define = None
        self.top_nn_define = None
        self.interactive_layer_define = None
        self._bottom_nn_model = Sequential()
        self._interactive_layer = Sequential()
        self._top_nn_model = Sequential()

    def add_bottom_model(self, layer):
        if not hasattr(self, "_bottom_nn_model"):
            setattr(self, "_bottom_nn_model", Sequential())

        self._bottom_nn_model.add(layer)

    def set_interactve_layer(self, layer):
        if not hasattr(self, "_interactive_layer"):
            setattr(self, "_interactive_layer", Sequential())

        self._interactive_layer.add(layer)

    def add_top_model(self, layer):
        if not hasattr(self, "_top_nn_model"):
            setattr(self, "_top_nn_model", Sequential())

        self._top_nn_model.add(layer)

    def compile(self, optimizer, loss=None, metrics=None):
        if metrics and not isinstance(metrics, list):
            raise ValueError("metrics should be a list")

        model = self.get_bottom_model()
        self.optimizer = model.get_optimizer_config(optimizer)
        self.loss = model.get_loss_config(loss)
        self.metrics = metrics
        self.config_type = model.get_layer_type()

        self._compile_common_network_config()
        self._compile_role_network_config()

    def _compile_common_network_config(self):
        if hasattr(
                self,
                "_bottom_nn_model") and not self._bottom_nn_model.is_empty():
            self.bottom_nn_define = self._bottom_nn_model.get_network_config()
            self._component_param["bottom_nn_define"] = self.bottom_nn_define

        if hasattr(self,
                   "_top_nn_model") and not self._top_nn_model.is_empty():
            self.top_nn_define = self._top_nn_model.get_network_config()
            self._component_param["top_nn_define"] = self.top_nn_define

        if hasattr(self, "_interactive_layer"
                   ) and not self._interactive_layer.is_empty():
            self.interactive_layer_define = self._interactive_layer.get_network_config(
            )
            self._component_param[
                "interactive_layer_define"] = self.interactive_layer_define

    def _compile_role_network_config(self):
        all_party_instance = self._get_all_party_instance()
        for role in all_party_instance:
            for party in all_party_instance[role]["party"].keys():
                all_party_instance[role]["party"][
                    party]._compile_common_network_config()

    def get_bottom_model(self):
        if hasattr(self, "_bottom_nn_model") and not getattr(
                self, "_bottom_nn_model").is_empty():
            return getattr(self, "_bottom_nn_model")

        all_party_instance = self._get_all_party_instance()
        for role in all_party_instance.keys():
            for party in all_party_instance[role]["party"].keys():
                if all_party_instance[role]["party"][party].get_bottom_model():
                    return all_party_instance[role]["party"][
                        party].get_bottom_model()

        return None

    def __getstate__(self):
        state = dict(self.__dict__)
        if "_bottom_nn_model" in state:
            del state["_bottom_nn_model"]

        if "_interactive_layer" in state:
            del state["_interactive_layer"]

        if "_top_nn_model" in state:
            del state["_top_nn_model"]

        return state