示例#1
0
def run_manual_code(study_id):
    """
    Create an AWS Batch job for the Study specified
    :param study_id: Primary key of a Study
    """
    # we assume that the cluster is configured only in one region.
    pipeline_region = get_current_region()

    # Get the object ID of the study, used in the pipeline
    query = Study.objects.filter(pk=study_id)
    if not query.exists():
        return abort(404)
    object_id = query.get().object_id

    error_sentry = make_error_sentry("data",
                                     tags={"pipeline_frequency": "manually"})
    # Get new data access credentials for the manual user, submit a manual job, display message
    # Report all errors to sentry including DataPipelineNotConfigured errors.
    with error_sentry:
        ssm_client = get_boto_client('ssm', pipeline_region)
        refresh_data_access_credentials('manually',
                                        ssm_client=ssm_client,
                                        webserver=True)
        batch_client = get_boto_client('batch', pipeline_region)
        create_one_job('manually', object_id, batch_client, webserver=True)
        flash('Data pipeline code successfully initiated!', 'success')

    if error_sentry.errors:
        flash('An unknown error occurred when trying to run this task.',
              category='danger')
        print error_sentry

    return redirect('/data-pipeline/{:s}'.format(study_id))
示例#2
0
def get_boto_client(client_type, pipeline_region=None):
    from config.settings import BEIWE_SERVER_AWS_ACCESS_KEY_ID, BEIWE_SERVER_AWS_SECRET_ACCESS_KEY
    region_name = pipeline_region or get_current_region()

    return boto3.client(
        client_type,
        aws_access_key_id=BEIWE_SERVER_AWS_ACCESS_KEY_ID,
        aws_secret_access_key=BEIWE_SERVER_AWS_SECRET_ACCESS_KEY,
        region_name=region_name,
    )
示例#3
0
_one_folder_up = _abspath(__file__).rsplit('/', 2)[0]
_path.insert(1, _one_folder_up)

from datetime import timedelta

from django.utils import timezone

from database.data_access_models import ChunkRegistry
from database.study_models import Study
from libs.sentry import make_error_sentry
from pipeline.boto_helpers import get_boto_client
from pipeline.configuration_getters import get_current_region
from pipeline.index import create_one_job, refresh_data_access_credentials

pipeline_region = get_current_region()
ssm_client = get_boto_client('ssm', pipeline_region)
error_sentry = make_error_sentry("data",
                                 tags={"pipeline_frequency": "manually"})
batch_client = get_boto_client('batch', pipeline_region)
yesterday = timezone.now() - timedelta(days=1)

refresh_data_access_credentials('manually',
                                ssm_client=ssm_client,
                                webserver=False)

################################################################################################
# if you are running this on an ubuntu machine you have to sudo apt-get -y install cloud-utils #
################################################################################################

for study in Study.objects.all():