示例#1
0
class CpuKnnModel:
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        (x_train, y_train), (x_valid, y_valid) = data_fold

        self.clip_threshold = model_dict['clip_threshold'] if model_dict[
            'clip_threshold'] is not None else 1e10
        self.train_features = self.clip(x_train.values[:, 1:].astype(np.float),
                                        self.clip_threshold)
        self.valid_features = self.clip(x_valid.values[:, 1:].astype(np.float),
                                        self.clip_threshold)
        self.train_targets = y_train.values[:, 1:].astype(np.float)
        self.valid_targets = y_valid.values[:, 1:].astype(np.float)

        # Setup metric
        self.valid_metrics = Metrics()

        self.classifier = None  #MLkNN(k=1)

        self.criterion = nn.BCELoss()

    def clip(self, data, threshold):
        return np.where(np.logical_and(data < threshold, data > -threshold),
                        data, 0)

    def train(self):
        # self.classifier.fit(self.train_features, self.train_targets)
        self.validation()
        return

    def validation(self, return_preds=True):
        predictions = self.predict(self.valid_features, transform=False)
        loss = self.evaluate(predictions, self.valid_targets)
        self.valid_metrics.add(loss)
        if return_preds:
            return loss, predictions
        else:
            return loss

    def evaluate(self, prediction, target):
        prediction = torch.Tensor(prediction).cuda().float()
        target = torch.Tensor(target).cuda().float()
        loss = self.criterion(prediction, target)
        return loss.detach().cpu().numpy()

    def predict(self, test_features, transform=True):
        if transform:
            test_features = self.clip(test_features.values[1:],
                                      self.clip_threshold)

        predictions = []
        for features in tqdm(test_features):
            predictions.append(self.train_targets[np.argmin(
                np.sum(np.square(self.train_features - features), axis=1))])

        return predictions

    def save(self, path):
        print(dir(self.classifier))
示例#2
0
 def __init__(self, model_dict, data_fold):
     self.model_dict = model_dict
     self.best_weights_path = join(
         self.model_dict['model_dir'],
         'fold-%d-weights.pth' % self.model_dict['fold'])
     (self.x_train, self.y_train), (self.x_valid, self.y_valid) = data_fold
     self.model = None
     self.target_cols = self.y_train.columns[1:]
     self.feature_cols = np.array(
         [c for c in self.x_train if 'g-' in c or 'c-' in c])
     self.valid_metrics = Metrics()
     self.use_cols = {}
示例#3
0
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        (x_train, y_train), (x_valid, y_valid) = data_fold

        self.threshold = self.model_dict['clip_threshold']
        self.amplify = self.model_dict['amplify']
        self.max_distance = self.model_dict['max_distance']

        self.train_features = self.transform(x_train.values[:, 1:].astype(
            np.float))
        self.valid_features = self.transform(x_valid.values[:, 1:].astype(
            np.float))
        self.train_targets = y_train.values[:, 1:].astype(np.float)
        self.valid_targets = y_valid.values[:, 1:].astype(np.float)

        # Setup metric
        self.valid_metrics = Metrics()

        self.index = faiss.IndexFlatL2(self.train_features.shape[1])
示例#4
0
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        (x_train, y_train), (x_valid, y_valid) = data_fold

        self.clip_threshold = model_dict['clip_threshold'] if model_dict[
            'clip_threshold'] is not None else 1e10
        self.train_features = self.clip(x_train.values[:, 1:].astype(np.float),
                                        self.clip_threshold)
        self.valid_features = self.clip(x_valid.values[:, 1:].astype(np.float),
                                        self.clip_threshold)
        self.train_targets = y_train.values[:, 1:].astype(np.float)
        self.valid_targets = y_valid.values[:, 1:].astype(np.float)

        # Setup metric
        self.valid_metrics = Metrics()

        self.classifier = None  #MLkNN(k=1)

        self.criterion = nn.BCELoss()
示例#5
0
class FaissKnnModel:
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        (x_train, y_train), (x_valid, y_valid) = data_fold

        self.threshold = self.model_dict['clip_threshold']
        self.amplify = self.model_dict['amplify']
        self.max_distance = self.model_dict['max_distance']

        self.train_features = self.transform(x_train.values[:, 1:].astype(
            np.float))
        self.valid_features = self.transform(x_valid.values[:, 1:].astype(
            np.float))
        self.train_targets = y_train.values[:, 1:].astype(np.float)
        self.valid_targets = y_valid.values[:, 1:].astype(np.float)

        # Setup metric
        self.valid_metrics = Metrics()

        self.index = faiss.IndexFlatL2(self.train_features.shape[1])

    def transform(self, data):
        if self.threshold is not None:
            data = np.where(
                np.logical_and(data < self.threshold, data > -self.threshold),
                data, 0)

        if self.amplify is not None:
            data = data**self.amplify

        return data

    def train(self):
        self.index.add(
            np.ascontiguousarray(self.train_features).astype('float32'))
        self.validation()

    def run(self, features):
        distances, indicies = self.index.search(
            np.ascontiguousarray(features).astype('float32'), 1)
        predictions = self.train_targets[indicies.flatten()]
        if self.max_distance is not None:
            predictions[np.where(
                distances.flatten() > self.model_dict['max_distance'])] = 0
        return predictions

    def validation(self, return_preds=True):
        predictions = self.run(self.valid_features)
        loss = log_loss(predictions, self.valid_targets)
        self.valid_metrics.add(loss)
        if return_preds:
            return loss, predictions
        else:
            return loss

    def predict(self, test_features):
        test_features = self.transform(test_features.values[:, 1:].astype(
            np.float))
        predictions = self.run(test_features)
        return predictions

    def save(self, path):
        return
示例#6
0
class TargetModel:
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        self.best_weights_path = join(
            self.model_dict['model_dir'],
            'fold-%d-weights.pth' % self.model_dict['fold'])
        (self.x_train, self.y_train), (self.x_valid, self.y_valid) = data_fold
        self.model = None
        self.target_cols = self.y_train.columns[1:]
        self.feature_cols = np.array(
            [c for c in self.x_train if 'g-' in c or 'c-' in c])
        self.valid_metrics = Metrics()
        self.use_cols = {}

    def feature_selector(self, cond):
        time_controls = [-1, 0, 1]
        dose_controls = [0, 1]

        use_feats = []
        for col in self.feature_cols:
            col_data = []

            for cp_time in time_controls:
                query = cond[cond['cp_time'] == cp_time]
                query = [
                    query[query['cp_dose'] == dose] for dose in dose_controls
                ]
                if min([len(x) for x in query]) == 0:
                    delta = 0.0
                else:
                    centers = [q[col].mean() for q in query]
                    delta = abs(centers[0] - centers[1])
                col_data.append(delta)

            for cp_dose in dose_controls:
                query = cond[cond['cp_dose'] == cp_dose]
                centers = [
                    query[query['cp_time'] == cp_time][col].mean()
                    for cp_time in time_controls
                ]
                deltas = [
                    abs(centers[0] - centers[1]),
                    abs(centers[1] - centers[2])
                ]
                avg_delta = np.mean(deltas)
                col_data.append(avg_delta)

            use_feats.append(np.max(col_data))

        return np.argsort(use_feats)[::-1][:self.model_dict['n_features']]

    def train_one(self, target):
        target_mask = self.y_train[target] == 1
        if np.sum(target_mask) > self.model_dict['n_cutoff']:
            condition = self.x_train[target_mask]
            use_features = self.feature_selector(condition)
            self.use_cols[target] = np.hstack(
                [['sig_id', 'cp_time', 'cp_dose'],
                 self.feature_cols[use_features]])
            drop_cols = [
                c for c in self.x_train.columns
                if c not in self.use_cols[target]
            ]
            x_train = self.x_train.drop(drop_cols, axis=1)
            y_train = self.y_train[['sig_id', target]]
            x_valid = self.x_valid.drop(drop_cols, axis=1)
            y_valid = self.y_valid[['sig_id', target]]
            data_fold = ((x_train, y_train), (x_valid, y_valid))

            save_path = join(self.model_dict['model_dir'], target)
            if not exists(save_path):
                os.mkdir(save_path)

            model_dict = self.model_dict['model']
            model_dict['model_dir'] = save_path
            model_dict['fold'] = self.model_dict['fold']
            model_dict['use_smart_init'] = False
            model = NeuralNetModel(self.model_dict['model'], data_fold)
            model.model.layers = initialize_weights(model.model.layers, target)
            model.train()

            if self.model is None:
                self.model = model

    def train(self):
        for target in self.target_cols:
            self.train_one(target)
        self.validation()

    def run(self, features):
        predictions = []
        for target in self.target_cols:
            if target not in self.use_cols.keys():
                pred = np.zeros((len(features)))
            else:
                target_features = features[self.use_cols[target]]
                self.model.load(
                    join(self.model_dict['model_dir'],
                         'fold-%d-%s.pth' % (self.model_dict['fold'], target)))
                pred = self.model.predict(target_features)
                pred = pred.detach().cpu().numpy()
            predictions.append(pred)
        predictions = np.array(predictions)
        return predictions

    def validation(self, return_preds=False):
        predictions = self.run(self.x_valid)
        loss = log_loss(predictions, self.y_valid)
        self.valid_metrics.add(loss)
        if return_preds:
            return loss, predictions
        else:
            return loss

    def predict(self, test_features):
        return self.run(test_features)

    def save(self, path):
        return
示例#7
0
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        self.best_weights_path = join(
            self.model_dict['model_dir'],
            'fold-%d-weights.pth' % self.model_dict['fold'])
        self.epoch = 0
        self.criterion = nn.BCEWithLogitsLoss()
        self.train_metrics = Metrics()
        self.valid_metrics = Metrics()

        # Unpack data fold and initialize dataloaders
        (self.x_train, self.y_train), (self.x_valid, self.y_valid) = data_fold
        self.input_dim = len(self.x_train.columns) - 1
        self.output_dim = len(self.y_train.columns) - 1

        if model_dict['use_smote']:
            print(self.x_train.head())
            print(self.y_train.head())
            self.x_train, self.y_train = mlsmote(self.x_train, self.y_train,
                                                 30000)
            print(self.x_train.head())
            print(self.y_train.head())

        self.train_dataloader = get_dataloader(self.x_train,
                                               self.y_train,
                                               model_dict,
                                               model_dict['augmentations'],
                                               shuffle=True)
        self.valid_dataloader = get_dataloader(self.x_valid, self.y_valid,
                                               model_dict)

        if model_dict['model'] == 'MoaDenseNet':
            self.model = MoaDenseNet(
                self.input_dim,
                self.output_dim,
                model_dict['n_hidden_layer'],
                model_dict['hidden_dim'],
                model_dict['dropout'],
                model_dict['activation'],
                model_dict['normalization'],
            )

        if model_dict['use_smart_init']:
            self.model.layers = initialize_weights(self.model.layers, 'all')

        # Setup optimizer
        if model_dict['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(self.model.parameters(),
                                       lr=model_dict['learning_rate'],
                                       momentum=model_dict['momentum'])
        elif model_dict['optimizer'] == 'adam':
            self.optimizer = optim.Adam(
                self.model.parameters(),
                lr=model_dict['learning_rate'],
                weight_decay=model_dict['weight_decay'])
        else:
            Exception('Optimizer not supported.')

        # Setup scheduler
        if model_dict['scheduler'] == 'ReduceLROnPlateau':
            self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
                self.optimizer, patience=3, threshold=0.00001)
        elif model_dict['scheduler'] == 'OneCycleLR':
            self.scheduler = optim.lr_scheduler.OneCycleLR(
                self.optimizer,
                max_lr=0.01,
                pct_start=0.1,
                div_factor=1e3,
                epochs=model_dict['n_epochs'],
                steps_per_epoch=len(self.train_dataloader))
        else:
            Exception('Scheduler not supported.')

        # Save initial states of model, optimizer and scheduler
        self.init_states = dict(model=self.model.state_dict(),
                                optimizer=self.optimizer.state_dict(),
                                scheduler=self.scheduler.state_dict())
        self.model = self.model.cuda()

        # Setup AMP
        if model_dict['use_amp']:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")
示例#8
0
class NeuralNetModel:
    def __init__(self, model_dict, data_fold):
        self.model_dict = model_dict
        self.best_weights_path = join(
            self.model_dict['model_dir'],
            'fold-%d-weights.pth' % self.model_dict['fold'])
        self.epoch = 0
        self.criterion = nn.BCEWithLogitsLoss()
        self.train_metrics = Metrics()
        self.valid_metrics = Metrics()

        # Unpack data fold and initialize dataloaders
        (self.x_train, self.y_train), (self.x_valid, self.y_valid) = data_fold
        self.input_dim = len(self.x_train.columns) - 1
        self.output_dim = len(self.y_train.columns) - 1

        if model_dict['use_smote']:
            print(self.x_train.head())
            print(self.y_train.head())
            self.x_train, self.y_train = mlsmote(self.x_train, self.y_train,
                                                 30000)
            print(self.x_train.head())
            print(self.y_train.head())

        self.train_dataloader = get_dataloader(self.x_train,
                                               self.y_train,
                                               model_dict,
                                               model_dict['augmentations'],
                                               shuffle=True)
        self.valid_dataloader = get_dataloader(self.x_valid, self.y_valid,
                                               model_dict)

        if model_dict['model'] == 'MoaDenseNet':
            self.model = MoaDenseNet(
                self.input_dim,
                self.output_dim,
                model_dict['n_hidden_layer'],
                model_dict['hidden_dim'],
                model_dict['dropout'],
                model_dict['activation'],
                model_dict['normalization'],
            )

        if model_dict['use_smart_init']:
            self.model.layers = initialize_weights(self.model.layers, 'all')

        # Setup optimizer
        if model_dict['optimizer'] == 'sgd':
            self.optimizer = optim.SGD(self.model.parameters(),
                                       lr=model_dict['learning_rate'],
                                       momentum=model_dict['momentum'])
        elif model_dict['optimizer'] == 'adam':
            self.optimizer = optim.Adam(
                self.model.parameters(),
                lr=model_dict['learning_rate'],
                weight_decay=model_dict['weight_decay'])
        else:
            Exception('Optimizer not supported.')

        # Setup scheduler
        if model_dict['scheduler'] == 'ReduceLROnPlateau':
            self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
                self.optimizer, patience=3, threshold=0.00001)
        elif model_dict['scheduler'] == 'OneCycleLR':
            self.scheduler = optim.lr_scheduler.OneCycleLR(
                self.optimizer,
                max_lr=0.01,
                pct_start=0.1,
                div_factor=1e3,
                epochs=model_dict['n_epochs'],
                steps_per_epoch=len(self.train_dataloader))
        else:
            Exception('Scheduler not supported.')

        # Save initial states of model, optimizer and scheduler
        self.init_states = dict(model=self.model.state_dict(),
                                optimizer=self.optimizer.state_dict(),
                                scheduler=self.scheduler.state_dict())
        self.model = self.model.cuda()

        # Setup AMP
        if model_dict['use_amp']:
            self.model, self.optimizer = amp.initialize(self.model,
                                                        self.optimizer,
                                                        opt_level="O1")

    def train_epoch(self):
        losses = []
        self.model.train()
        for features, targets, ids in self.train_dataloader:
            features = {k: v.cuda().float() for k, v in features.items()}
            targets = targets.cuda().float()
            predictions = self.model(features)
            loss = self.criterion(predictions, targets)
            for p in self.model.parameters():
                p.grad = None
            if self.model_dict['use_amp']:
                with amp.scale_loss(loss, self.optimizer) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
            self.optimizer.step()
            if self.model_dict['scheduler'] == 'OneCycleLR':
                self.scheduler.step()
            losses.append(loss.detach().cpu().numpy())
        avg_loss = float(np.mean(losses))
        self.train_metrics.add(avg_loss)
        return avg_loss

    def validation(self, return_preds=False):
        losses = []
        predictions = []
        self.model.eval()

        for features, targets, ids in self.valid_dataloader:
            features = {k: v.cuda().float() for k, v in features.items()}
            targets = targets.cuda().float()
            pred = self.model(features)
            loss = self.criterion(pred, targets)
            losses.append(loss.detach().cpu().numpy())
            if return_preds:
                predictions.extend(pred.detach().cpu().numpy())

        avg_loss = float(np.mean(losses))

        if return_preds:
            return avg_loss, predictions
        else:
            return avg_loss

    def train(self):
        print('Training NN with %d samples, validating with %d' %
              (len(self.x_train), len(self.x_valid)))
        print('Input_dim: %d Output_dim: %d' %
              (self.input_dim, self.output_dim))
        for epoch in range(self.model_dict['n_epochs']):
            self.epoch = epoch
            time0 = time.time()

            train_avg_loss = self.train_epoch()
            valid_avg_loss = self.validation()

            if self.epoch == 0 or valid_avg_loss < self.valid_metrics.min():
                # new best weights
                self.save(self.best_weights_path)
            self.valid_metrics.add(valid_avg_loss)

            if self.model_dict['scheduler'] != 'OneCycleLR':
                self.scheduler.step(valid_avg_loss)

            time1 = time.time()
            epoch_time = time1 - time0
            if self.model_dict['verbose']:
                print(
                    'Epoch %d/%d Train Loss: %.5f Valid Loss: %.5f Time: %.2f'
                    % (epoch + 1, self.model_dict['n_epochs'], train_avg_loss,
                       valid_avg_loss, epoch_time))

        # restore weights from best epoch
        self.load(self.best_weights_path)

    def predict(self, test_features):
        test_dataset = MoaDataset(test_features)
        test_dataloader = DataLoader(
            test_dataset,
            batch_size=self.model_dict['batch_size'],
            num_workers=self.model_dict['num_workers'],
            pin_memory=True)
        predictions = []
        self.model.eval()
        for features, ids in test_dataloader:
            features = {k: v.cuda().float() for k, v in features.items()}
            pred = self.model(features)
            predictions.extend(pred.detach().cpu().numpy())
        return predictions

    def reset(self):
        self.model.load_state_dict(self.init_states['model'])
        self.optimizer.load_state_dict(self.init_states['optimizer'])
        self.scheduler.load_state_dict(self.init_states['scheduler'])
        self.train_metrics.reset()
        self.valid_metrics.reset()

    def save(self, path):
        self.model.eval()
        torch.save(
            {
                'model': self.model.state_dict(),
                'optimizer': self.optimizer.state_dict(),
                'scheduler': self.scheduler.state_dict(),
                'train_metrics': self.train_metrics.data,
                'valid_metrics': self.valid_metrics.data,
            }, path)

    def load(self, path):
        state_dict = torch.load(path)
        self.model.load_state_dict(state_dict['model'])
        self.optimizer.load_state_dict(state_dict['optimizer'])
        self.scheduler.load_state_dict(state_dict['scheduler'])
        self.train_metrics.load(state_dict['train_metrics'])
        self.valid_metrics.load(state_dict['valid_metrics'])