def get_performance_wrap(run_path, det_file, beta=2): config = loadfile(os.path.join(run_path, 'config.yaml')) config = proc_config(config) detections_test_file = os.path.join(run_path, det_file) thresh, fppi, miss_rate, recall, precision = \ get_perform_measures_from_file( os.path.join(config['data_path'], config['detect_test_set']), detections_test_file, overlap=config['overlap_threshold']) fscore = get_fscore(recall, precision, beta=beta) precision_recall_auc = metrics.auc( recall, precision, reorder=True) logavg_miss_rate = get_avg_miss_rate(fppi, miss_rate) return dict( precision_recall_auc=precision_recall_auc, logavg_miss_rate=logavg_miss_rate, thresh=thresh, fppi=fppi, miss_rate=miss_rate, recall=recall, precision=precision, fscore=fscore, )
def test_on_patches(): config = loadfile('config.yaml') config['flag_debug'] = True config = proc_config(config) X_train_init, y_train_init, X_valid_init, y_valid_init = \ load_initial_data_wrap(config) train_img_list = recover_image_from_vector(X_train_init) valid_img_list = recover_image_from_vector(X_valid_init) bowsvm = BowSvm(kernel='linear', C=100.) time_start = time.time() print 'training...' bowsvm.fit(train_img_list, y_train_init) print time.time() - time_start time_start = time.time() labels_pred_train = bowsvm.predict(train_img_list) labels_pred_valid = bowsvm.predict(valid_img_list) print time.time() - time_start print accuracy_score(y_train_init, labels_pred_train) print accuracy_score(y_valid_init, labels_pred_valid)
def get_image_level_performance_wrap(run_path, det_file, overlap=0.5, beta=2.): config = loadfile(os.path.join(run_path, 'config.yaml')) config = proc_config(config) detections_test_file = os.path.join(run_path, det_file) return get_image_level_performance_from_file(os.path.join( config['data_path'], config['detect_test_set']), detections_test_file, overlap=overlap, beta=beta)
x_cat = np.concatenate([ np.concatenate(x_pad[ind * num_row:(ind + 1) * num_row], axis=0) for ind in range(num_col) ], axis=1) return x_cat path = '/mnt/data/wding/tmp/bugs/bug_run_2015-04-14_20-58-36_39_single/misdetects0.pkl' _, x_new_neg = loadfile(path) config = loadfile('config.yaml') config['flag_debug'] = True config = proc_config(config) config['dist_trans_list'] = (-5, 0, 5) config['write_path'] = \ '/mnt/data/wding/tmp/bugs/bug_run_2015-04-14_20-58-36_39_single' x, y, _, _ = load_initial_data_wrap(config) # x_new_neg, _ = load_misclf_data_wrap(config, ind_round=1, data_set='train') _, x_new_neg = loadfile(path) x_new_neg = np.array(x_new_neg) / 255. x_reshaped = np.rollaxis(x.reshape((-1, 3, 28, 28)), 1, 4) / 255. x_pos = x_reshaped[y.astype(bool)] num_unique = x_pos.shape[0] / 72 ind_unique = 1 indices = []