示例#1
0
def main():
    log = logging.getLogger("main")

    # creating exit mask from points, where we will be counting our vehicles
    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    # there is also bgslibrary, that seems to give better BG substruction, but
    # not tested it yet
    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    # processing pipline for programming conviniance
    pipeline = PipelineRunner(
        pipeline=[
            ContourDetection(bg_subtractor=bg_subtractor,
                             save_image=True,
                             image_dir=IMAGE_DIR),
            # we use y_weight == 2.0 because traffic are moving vertically on video
            # use x_weight == 2.0 for horizontal.
            VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
            Visualizer(image_dir=IMAGE_DIR),
            CsvWriter(path='./', name='report.csv')
        ],
        log_level=logging.DEBUG)

    # Set up image source
    # You can use also CV2, for some reason it not working for me
    cap = skvideo.io.vreader(VIDEO_SOURCE)

    # skipping 500 frames to train bg subtractor
    train_bg_subtractor(bg_subtractor, cap, num=500)

    _frame_number = -1
    frame_number = -1
    for frame in cap:
        if not frame.any():
            log.error("Frame capture failed, stopping...")
            break

        # real frame number
        _frame_number += 1

        # skip every 2nd frame to speed up processing
        if _frame_number % 2 != 0:
            continue

        # frame number that will be passed to pipline
        # this needed to make video from cutted frames
        frame_number += 1

        # plt.imshow(frame)
        # plt.show()
        # return

        pipeline.set_context({
            'frame': frame,
            'frame_number': frame_number,
        })
        pipeline.run()
示例#2
0
def main():
    log = logging.getLogger("main")

    # creating exit mask from points, where we will be counting our vehicles
    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    # there is also bgslibrary, that seems to give better BG substruction, but
    # not tested it yet
    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    # processing pipeline for programming conviniance
    pipeline = PipelineRunner(
        pipeline=[
            ContourDetection(bg_subtractor=bg_subtractor,
                             save_image=True,
                             image_dir=IMAGE_DIR),
            # we use y_weight == 2.0 because traffic are moving vertically on video
            # use x_weight == 2.0 for horizontal.
            VehicleCounter(exit_masks=[exit_mask], y_weight=2.0, x_weight=1.5),
            Visualizer(image_dir=IMAGE_DIR),
            CsvWriter(path='./', name=REPORT_NAME)
        ],
        log_level=logging.DEBUG)

    # Set up image source
    # You can use also CV2, for some reason it not working for me
    cap = cv2.VideoCapture(VIDEO_SOURCE)

    # skipping 100 frames to train bg subtractor
    train_bg_subtractor(bg_subtractor, cap, num=500)

    frame_number = -1
    while True:
        ret, frame = cap.read()
        if frame is None:
            log.error("Frame capture failed, stopping...")
            break

        frame_number += 1

        # plt.imshow(frame)
        # plt.show()
        # return

        pipeline.set_context({
            'frame': frame,
            'frame_number': frame_number,
        })
        pipeline.run()
示例#3
0
def main():
    log = logging.getLogger("main")

    # creating exit mask from points, where we will be counting our vehicles
    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    # there is also bgslibrary, that seems to give better BG substruction, but
    # not tested it yet
    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    # processing pipline for programming conviniance
    pipeline = PipelineRunner(
        pipeline=[
            ContourDetection(bg_subtractor=bg_subtractor,
                             min_contour_width=MIN_COUNTOUR_WIDTH,
                             min_contour_height=MIN_COUNTOUR_HEIGHT,
                             save_image=True,
                             image_dir=IMAGE_DIR),
            # we use y_weight == 2.0 because traffic are moving vertically on video
            # use x_weight == 2.0 for horizontal.
            VehicleCounter(exit_masks=[exit_mask], x_weight=2.0),
            Visualizer(image_dir=IMAGE_DIR),
            # CsvWriter(path='./', name='report.csv')
        ],
        log_level=logging.DEBUG)

    # Set up image source
    # You can use also CV2, for some reason it not working for me
    #    cap = skvideo.io.vreader(VIDEO_SOURCE)

    # skipping 500 frames to train bg subtractor
    if VIDEO_SOURCE:
        cap = skvideo.io.vreader(VIDEO_SOURCE)
        train_bg_subtractor_video(bg_subtractor, cap, num=500)
        cap = skvideo.io.vreader(VIDEO_SOURCE)
        run_video(pipeline, cap)
    else:
        camera = PiCamera()
        camera.resolution = (640, 368)
        camera.framerate = 32
        rawCapture = PiRGBArray(camera, size=(640, 368))
        # allow the camera to warmup
        time.sleep(0.1)
        train_bg_subtractor_pi(bg_subtractor, camera, rawCapture, num=500)
        run_pi(pipeline, camera, rawCapture)
        cap.release()
        cv2.destroyAllWindows()
示例#4
0
def main():
    log = logging.getLogger("main")

    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    pipeline = PipelineRunner(
        pipeline=[
            ContourDetection(bg_subtractor=bg_subtractor,
                             save_image=True,
                             image_dir=IMAGE_DIR),
            # y_weight == 2.0 vertical
            # x_weight == 2.0 for horizontal. in below line
            VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
            Visualizer(image_dir=IMAGE_DIR),
            CsvWriter(path='./', name='report.csv')
        ],
        log_level=logging.DEBUG)

    cap = cv2.VideoCapture(VIDEO_SOURCE)

    train_bg_subtractor(bg_subtractor, cap, num=500)

    _frame_number = -1
    frame_number = -1
    while cap.isOpened():
        ret, frame = cap.read()

        _frame_number += 1

        if _frame_number % 2 != 0:
            continue

        frame_number += 1

        # plt.imshow(frame)
        # plt.show()
        # return

        pipeline.set_context({
            'frame': frame,
            'frame_number': frame_number,
        })
        pipeline.run()
    print("End of Video Reached......")
示例#5
0
def main():
    log = logging.getLogger("main")

    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    pipeline = PipelineRunner(pipeline=[
        ContourDetection(bg_subtractor=bg_subtractor,
                         save_image=True,
                         image_dir=IMAGE_DIR),
        VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
        Visualizer(image_dir=IMAGE_DIR),
        CsvWriter(path='./', name='report.csv')
    ],
                              log_level=logging.DEBUG)

    cap = skvideo.io.vreader(VIDEO_SOURCE)

    train_bg_subtractor(bg_subtractor, cap, num=500)

    _frame_number = -1
    frame_number = -1
    for frame in cap:
        if not frame.any():
            log.error("Frame capture failed, stopping...")
            break

        _frame_number += 1

        if _frame_number % 2 != 0:
            continue

        frame_number += 1

        # plt.imshow(frame)
        # plt.show()
        # return

        pipeline.set_context({
            'frame': frame,
            'frame_number': frame_number,
        })
        pipeline.run()
def main():
    skvideo.setFFmpegPath(
        "D:\\Computer Vision\\Homework1\\opencv_traffic_counting\\ffmpeg-20190519-fbdb3aa-win64-static\\bin"
    )
    log = logging.getLogger("main")

    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    pipeline = ProcessPipelineRunner(pipeline=[
        ContourDetection(bg_subtractor=bg_subtractor,
                         save_image=True,
                         image_dir=Image_dir),
        VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
        Vis(image_dir=Image_dir),
        write_csv(path='./', name='report.csv')
    ],
                                     log_level=logging.DEBUG)

    cap = skvideo.io.vreader(Vid_src)

    # skip num frames and train the background subtractor it will identify the background for all the frames
    bg_Subtractor_train(bg_subtractor, cap, num=1000)

    _frame_number = -1
    frame_number = -1
    for frame in cap:
        if not frame.any():
            log.error("Frame capture failed, stopping...")
            break

        _frame_number += 1

        if _frame_number % 2 != 0:
            continue

        frame_number += 1

        pipeline.set_context({
            'frame': frame,
            'frame_number': frame_number,
        })
        pipeline.run()
def main():
    log = logging.getLogger("main")

    # creating an exit mask from points where we will be counting out vehicles
    base = np.zeros(Shape + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, Exit_pts, (255, 255, 255))[:, :, 0]

    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    # processing pipeline for programming convenience
    pipeline = PipelineRunner(
        pipeline=[
            ContourDetection(bg_subtractor=bg_subtractor,
                             save_image=True,
                             image_dir=Image_dir),
            # we use y_weight == 2.0 because traffic are moving vertically on video
            # use x_weight == 2.0 for horizontal
            VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
            Visualizer(image_dir=Image_dir),
            CsvWriter(path='./', name='report.csv')
        ],
        log_level=logging.DEBUG)

    #setting up image source
    cap = skvideo.io.vreader(Video_source)

    # skip 500 frames to train bg subtractor
    train_bg_subtractor(bg_subtractor, cap, num=500)
    _frame_number = -1
    frame_number = -1
    for frame in cap:
        if not frame.any():
            log.error("frame capture failed, stopping...")
            break

        # real frame number
        _frame_number += 1
        #skipping every 2nd frame to speed up processing
        if _frame_number % 2 != 0:
            continue
        frame_number += 1

        pipeline.set_context({'frame': frame, 'frame_number': frame_number})
        pipeline.run()
示例#8
0
def main():

    # creating exit mask from points, where we will be counting our vehicles
    base = np.zeros(SHAPE + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    pipeline = PipelineRunner(pipeline=[
        ContourDetection(
            bg_subtractor=bg_subtractor, save_image=True, image_dir=IMAGE_DIR),
        # we use y_weight == 2.0 because traffic are moving vertically on video
        # use x_weight == 2.0 for horizontal.
        VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
        Visualizer(image_dir=IMAGE_DIR),
    ])

    cap = skvideo.io.vreader(VIDEO_SOURCE)

    train_bg_subtractor(bg_subtractor, cap, num=500)

    _frame_number = -1
    frame_number = -1
    for frame in cap:
        if not frame.any():
            break

        _frame_number += 1
        if _frame_number % 2 != 0:
            continue

        frame_number += 1

        pipeline.set_context({
            'frame': frame,
            'frame_number': frame_number,
        })
        pipeline.run()
示例#9
0
exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

# there is also bgslibrary, that seems to give better BG substruction, but
# not tested it yet
bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                   detectShadows=True)

# processing pipline for programming conviniance
pipeline = PipelineRunner(
    pipeline=[
        ContourDetection(bg_subtractor=bg_subtractor,
                         save_image=True,
                         image_dir=IMAGE_DIR),
        # we use y_weight == 2.0 because traffic are moving vertically on video
        # use x_weight == 2.0 for horizontal.
        VehicleCounter(exit_masks=[exit_mask], y_weight=2.0),
        Visualizer(image_dir=IMAGE_DIR),
        CsvWriter(path='./', name='report.csv')
    ],
    log_level=logging.DEBUG)

# skipping 500 frames to train bg subtractor
train_bg_subtractor(bg_subtractor, cap, num=500)

_frame_number = -1
frame_number = -1
cv2.namedWindow('op', cv2.WINDOW_NORMAL)
while True:
    _, frame = cap.read()
    # for frame in cap:
    if not frame.any():
def main():
    log = logging.getLogger("main")

    # pick pixel distance start&end by double clicking
    PIXEL_DISTANCE = select_pixel_distance(VIDEO_SOURCE)
    if not PIXEL_DISTANCE:
        print("No selection of PIXEL_DISTANCE!")
        return
    else:
        print('PIXEL_DISTANCE: ')
        print(PIXEL_DISTANCE)

    PYHSICAL_DISTANCE = float(
        input(
            "Please enter the physical distance in meters of the pixel distance selected:"
        ))

    METER_PER_PIXEL = PYHSICAL_DISTANCE / PIXEL_DISTANCE

    # draw polygons using mouse to pick exit points
    EXIT_PTS = select_exit_zones(VIDEO_SOURCE)
    if not EXIT_PTS:
        print("No selection of exit zone!")
        return
    else:
        EXIT_PTS = np.array(EXIT_PTS)
        print('EXIT_PTS: ')
        print(EXIT_PTS)

    # Set up image source
    cap = cv2.VideoCapture(VIDEO_SOURCE)

    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    fps = int(cap.get(cv2.CAP_PROP_FPS))
    n_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    print(width, height)

    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    out = cv2.VideoWriter(VIDEO_OUT_DEST, fourcc, fps, (width, height))

    # creating exit mask from points, where we will be counting our vehicles
    base = np.zeros((height, width) + (3, ), dtype='uint8')
    exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

    # there is also bgslibrary, that seems to give better BG substruction, but
    # not tested it yet
    bg_subtractor = cv2.createBackgroundSubtractorMOG2(history=500,
                                                       detectShadows=True)

    # processing pipline for programming conviniance
    pipeline = PipelineRunner(
        pipeline=[
            ContourDetection(bg_subtractor=bg_subtractor,
                             min_contour_width=int(MIN_CONTOUR_RATIO * height),
                             min_contour_height=int(MIN_CONTOUR_RATIO *
                                                    height),
                             save_image=False,
                             image_dir=IMAGE_DIR),
            # we use y_weight == 2.0 because traffic are moving vertically on video
            # use x_weight == 2.0 for horizontal.
            VehicleCounter(use_physical_speed=USE_PHYSICAL_SPEED,
                           meter_per_pixel=METER_PER_PIXEL,
                           fps=fps,
                           avg_speed_interval=AVG_SPEED_INTERVAL,
                           exit_masks=[exit_mask],
                           y_weight=2.0,
                           path_size=10),
            Visualizer(use_physical_speed=USE_PHYSICAL_SPEED,
                       video_out=out,
                       image_dir=IMAGE_DIR,
                       save_image=False),
            CsvWriter(path='./', name='report.csv')
        ],
        log_level=logging.DEBUG)

    # skipping 500 frames to train bg subtractor, close video and reopen
    train_bg_subtractor(bg_subtractor, cap, num=500)
    cap.release()

    frame_number = -1
    frame_time_sec = -1.0 / fps
    cap = cv2.VideoCapture(VIDEO_SOURCE)
    while (cap.isOpened()):
        ret, frame = cap.read()
        if ret == True:
            # calculate the frame time in second
            frame_time_sec += 1.0 / fps

            # frame number that will be passed to pipline
            # this needed to make video from cutted frames
            frame_number += 1

            # plt.imshow(frame)
            # plt.show()
            # return

            pipeline.set_context({
                'frame': frame,
                'frame_number': frame_number,
                'frame_time_sec': frame_time_sec
            })
            pipeline.run()

            if cv2.waitKey(1) & 0xFF == ord('q'):
                break
        else:
            break
    # Release everything if job is finished
    cap.release()
    out.release()
    cv2.destroyAllWindows()