示例#1
0
 def __init__(self, prefix='', postfix='', sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.prefix = prefix
     self.postfix = postfix
     # this is need to inverse mapping
     self._original_column_names = {'x': {}, 'y': {}}
     self._new_column_names = {'x': {}, 'y': {}}
示例#2
0
 def __init__(self, x_cols='all', y_cols=[], invertible=True, sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.invertible = invertible
     # the inverse mapping is needed to invert the transformation
     self._inverse_map = {'x': None, 'y': None}
示例#3
0
 def __init__(self, x_cols=[], y_cols=[], k=3.0, skipna=True, sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.k = k
     self.skipna = skipna
     # the inverse mapping is needed to invert the transformation
     self._inverse_map = {'x': {}, 'y': {}}
示例#4
0
 def __init__(self, x_cols=[], y_cols=[], min_value=-1.0, max_value=1.0, sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.min_value = min_value
     self.max_value = max_value
     self._d = self.max_value - self.min_value
     # the inverse mapping is needed to invert the transformation
     self._inverse_map = {'x': None, 'y': None}
示例#5
0
 def __init__(self,
              how='any',
              on_x=True,
              on_y=True,
              sklearn_output=False,
              name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.how = how
     self.on_x = on_x
     self.on_y = on_y
示例#6
0
 def __init__(self,
              x_cols=[],
              y_cols=[],
              skipna=False,
              sklearn_output=False,
              name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.skipna = skipna
     self._map_category_to_number = {'x': {}, 'y': {}}
     self._map_number_to_category = {'x': {}, 'y': {}}
示例#7
0
 def __init__(self,
              x_cols=[],
              y_cols=[],
              value='median',
              method=None,
              sklearn_output=False,
              name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.value = value
     self.method = method
示例#8
0
    def __init__(self, x_cols=[], y_cols=[], func=None, inv_func=None, as_dataframe=False, reset_index=True,
                 sklearn_output=False, name=None):
        Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
        self.x_cols = x_cols
        self.y_cols = y_cols
        self.func = func
        self.inv_func = inv_func
        self.as_dataframe = as_dataframe
        self.reset_index = reset_index

        # this is need to inverse mapping
        self._inverse_map_column_names = {'x': {}, 'y': {}}
示例#9
0
 def __init__(self,
              on_rows=True,
              on_cols=True,
              on_x=True,
              on_y=False,
              sklearn_output=False,
              name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.on_rows = on_rows
     self.on_cols = on_cols
     self.on_x = on_x
     self.on_y = on_y
     self._drop_indices_row = []
示例#10
0
 def __init__(self,
              x_cols=[],
              y_cols=[],
              x_levels=2,
              y_levels=2,
              sklearn_output=False,
              name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.x_levels = x_levels
     self.y_levels = y_levels
     self._thresholds = {'x': {}, 'y': {}}
示例#11
0
 def __init__(self,
              x_cols=[],
              y_cols=[],
              k=3,
              x_is_categorical=None,
              y_is_categorical=None,
              sklearn_output=False,
              name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self.k = k
     self.x_is_categorical = x_is_categorical
     self.y_is_categorical = y_is_categorical
     self._cat2num = {
         'x': None,
         'y': None
     }  # this is needed to deal with potential categorical columns
     self._knn_models = {'x': None, 'y': None}
示例#12
0
 def __init__(self, x_cols=[], y_cols=[], sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.x_cols = x_cols
     self.y_cols = y_cols
     self._pdfs = {'x': {}, 'y': {}}
示例#13
0
 def __init__(self, transformers=[], reset_index=True, sklearn_output=False, name=None):
     Pipe.__init__(self, transformers=transformers)
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.reset_index = reset_index
     self._original_column_names = {'x': {}, 'y': {}}
示例#14
0
 def __init__(self, as_type=float, sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.as_type = as_type
示例#15
0
 def __init__(self, sequence_len=2, sklearn_output=False, name=None):
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)
     self.sequence_len = sequence_len
示例#16
0
 def __init__(self, transformers=[], sklearn_output=False, name=None):
     Pipe.__init__(self, transformers=transformers)
     Transformer.__init__(self, sklearn_output=sklearn_output, name=name)