def __init__(self, prefix='', postfix='', sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.prefix = prefix self.postfix = postfix # this is need to inverse mapping self._original_column_names = {'x': {}, 'y': {}} self._new_column_names = {'x': {}, 'y': {}}
def __init__(self, x_cols='all', y_cols=[], invertible=True, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.invertible = invertible # the inverse mapping is needed to invert the transformation self._inverse_map = {'x': None, 'y': None}
def __init__(self, x_cols=[], y_cols=[], k=3.0, skipna=True, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.k = k self.skipna = skipna # the inverse mapping is needed to invert the transformation self._inverse_map = {'x': {}, 'y': {}}
def __init__(self, x_cols=[], y_cols=[], min_value=-1.0, max_value=1.0, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.min_value = min_value self.max_value = max_value self._d = self.max_value - self.min_value # the inverse mapping is needed to invert the transformation self._inverse_map = {'x': None, 'y': None}
def __init__(self, how='any', on_x=True, on_y=True, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.how = how self.on_x = on_x self.on_y = on_y
def __init__(self, x_cols=[], y_cols=[], skipna=False, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.skipna = skipna self._map_category_to_number = {'x': {}, 'y': {}} self._map_number_to_category = {'x': {}, 'y': {}}
def __init__(self, x_cols=[], y_cols=[], value='median', method=None, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.value = value self.method = method
def __init__(self, x_cols=[], y_cols=[], func=None, inv_func=None, as_dataframe=False, reset_index=True, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.func = func self.inv_func = inv_func self.as_dataframe = as_dataframe self.reset_index = reset_index # this is need to inverse mapping self._inverse_map_column_names = {'x': {}, 'y': {}}
def __init__(self, on_rows=True, on_cols=True, on_x=True, on_y=False, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.on_rows = on_rows self.on_cols = on_cols self.on_x = on_x self.on_y = on_y self._drop_indices_row = []
def __init__(self, x_cols=[], y_cols=[], x_levels=2, y_levels=2, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.x_levels = x_levels self.y_levels = y_levels self._thresholds = {'x': {}, 'y': {}}
def __init__(self, x_cols=[], y_cols=[], k=3, x_is_categorical=None, y_is_categorical=None, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self.k = k self.x_is_categorical = x_is_categorical self.y_is_categorical = y_is_categorical self._cat2num = { 'x': None, 'y': None } # this is needed to deal with potential categorical columns self._knn_models = {'x': None, 'y': None}
def __init__(self, x_cols=[], y_cols=[], sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.x_cols = x_cols self.y_cols = y_cols self._pdfs = {'x': {}, 'y': {}}
def __init__(self, transformers=[], reset_index=True, sklearn_output=False, name=None): Pipe.__init__(self, transformers=transformers) Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.reset_index = reset_index self._original_column_names = {'x': {}, 'y': {}}
def __init__(self, as_type=float, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.as_type = as_type
def __init__(self, sequence_len=2, sklearn_output=False, name=None): Transformer.__init__(self, sklearn_output=sklearn_output, name=name) self.sequence_len = sequence_len
def __init__(self, transformers=[], sklearn_output=False, name=None): Pipe.__init__(self, transformers=transformers) Transformer.__init__(self, sklearn_output=sklearn_output, name=name)