def test_lpips_loss_raises_if_wrong_reduction(x, y) -> None: for mode in ['mean', 'sum', 'none']: LPIPS(reduction=mode)(x, y) for mode in [None, 'n', 2]: with pytest.raises(ValueError): LPIPS(reduction=mode)(x, y)
def test_lpips_loss_raises_if_wrong_reduction(prediction: torch.Tensor, target: torch.Tensor) -> None: for mode in ['mean', 'sum', 'none']: LPIPS(reduction=mode)(prediction, target) for mode in [None, 'n', 2]: with pytest.raises(KeyError): LPIPS(reduction=mode)(prediction, target)
def test_lpips_loss_forward_for_special_cases(x, y, expectation: Any, value: float) -> None: loss = LPIPS() with expectation: loss_value = loss(x, y) assert torch.isclose(loss_value, torch.tensor(value), atol=1e-6), \ f'Expected loss value to be equal to target value. Got {loss_value} and {value}'
def test_lpips_computes_grad(x, y, device: str) -> None: x.requires_grad_() loss_value = LPIPS()(x.to(device), y.to(device)) loss_value.backward() assert x.grad is not None, NONE_GRAD_ERR_MSG
def test_lpips_loss_forward(input_tensors: Tuple[torch.Tensor, torch.Tensor], device: str) -> None: x, y = input_tensors loss = LPIPS() loss(x.to(device), y.to(device))
def test_lpips_loss_init() -> None: LPIPS()
def test_lpips_computes_grad(prediction: torch.Tensor, target: torch.Tensor, device: str) -> None: prediction.requires_grad_() loss_value = LPIPS()(prediction.to(device), target.to(device)) loss_value.backward() assert prediction.grad is not None, NONE_GRAD_ERR_MSG
def test_lpips_loss_forward(input_tensors: Tuple[torch.Tensor, torch.Tensor], device: str) -> None: prediction, target = input_tensors loss = LPIPS() loss(prediction.to(device), target.to(device))