示例#1
0
    def get_template(self, params, return_stages=False):
        '''
        Runs entire template-making chain, using parameters found in
        'params' dict. If 'return_stages' is set to True, returns
        output from each stage as a simple tuple.
        '''

        logging.info("STAGE 1: Getting Atm Flux maps...")
        with Timer() as t:
            flux_maps = get_flux_maps(self.flux_service, self.ebins,
                                      self.czbins, **params)
        tprofile.debug("==> elapsed time for flux stage: %s sec" % t.secs)

        logging.info("STAGE 2: Getting osc prob maps...")
        with Timer() as t:
            osc_flux_maps = get_osc_flux(flux_maps,
                                         self.osc_service,
                                         oversample_e=self.oversample_e,
                                         oversample_cz=self.oversample_cz,
                                         **params)
        tprofile.debug("==> elapsed time for oscillations stage: %s sec" %
                       t.secs)

        logging.info("STAGE 3: Getting event rate true maps...")
        with Timer() as t:
            event_rate_maps = get_event_rates(osc_flux_maps, self.aeff_service,
                                              **params)
        tprofile.debug("==> elapsed time for aeff stage: %s sec" % t.secs)

        logging.info("STAGE 4: Getting event rate reco maps...")
        with Timer() as t:
            event_rate_reco_maps = get_reco_maps(event_rate_maps,
                                                 self.reco_service, **params)
        tprofile.debug("==> elapsed time for reco stage: %s sec" % t.secs)

        logging.info("STAGE 5: Getting pid maps...")
        with Timer(verbose=False) as t:
            final_event_rate = get_pid_maps(event_rate_reco_maps,
                                            self.pid_service)
        tprofile.debug("==> elapsed time for pid stage: %s sec" % t.secs)

        if not return_stages:
            return final_event_rate

        # Otherwise, return all stages as a simple tuple
        return (flux_maps, osc_flux_maps, event_rate_maps,
                event_rate_reco_maps, final_event_rate)
示例#2
0
    def get_osc_prob_maps(self, **kwargs):
        """
        Returns an oscillation probability map dictionary calculated
        at the values of the input parameters:
          deltam21,deltam31,theta12,theta13,theta23,deltacp
        for flavor_from to flavor_to, with the binning of ebins,czbins.
        The dictionary is formatted as:
          'nue_maps': {'nue':map,'numu':map,'nutau':map},
          'numu_maps': {...}
          'nue_bar_maps': {...}
          'numu_bar_maps': {...}
        NOTES:
          * expects all angles in [rad]
          * this method doesn't calculate the oscillation probabilities
            itself, but calls get_osc_probLT_dict internally, to get a
            high resolution map of the oscillation probs,
        """

        #Get the finely binned maps as implemented in the derived class
        logging.info('Retrieving finely binned maps')
        with Timer(verbose=False) as t:
            fine_maps = self.get_osc_probLT_dict(**kwargs)
        print "       ==> elapsed time to get all fine maps: %s sec" % t.secs

        logging.info("Smoothing fine maps...")
        smoothed_maps = {}
        smoothed_maps['ebins'] = self.ebins
        smoothed_maps['czbins'] = self.czbins

        with Timer(verbose=False) as t:
            for from_nu, tomap_dict in fine_maps.items():
                if 'vals' in from_nu: continue
                new_tomaps = {}
                for to_nu, pvals in tomap_dict.items():
                    logging.debug("Getting smoothed map %s/%s" %
                                  (from_nu, to_nu))

                    new_tomaps[to_nu] = get_smoothed_map(
                        pvals, fine_maps['evals'], fine_maps['czvals'],
                        self.ebins, self.czbins)

                smoothed_maps[from_nu] = new_tomaps

        tprofile.debug("       ==> elapsed time to smooth maps: %s sec" %
                       t.secs)

        return smoothed_maps
示例#3
0
    def get_osc_prob_maps(self, **kwargs):
        """
        Returns an oscillation probability map dictionary calculated
        at the values of the input parameters:
          deltam21,deltam31,theta12,theta13,theta23,deltacp
        for flavor_from to flavor_to, with the binning of ebins,czbins.
        The dictionary is formatted as:
          'nue_maps': {'nue':map,'numu':map,'nutau':map},
          'numu_maps': {...}
          'nue_bar_maps': {...}
          'numu_bar_maps': {...}
        NOTES:
          * expects all angles in [rad]
          * this method doesn't calculate the oscillation probabilities
            itself, but calls get_osc_probLT_dict internally, to get a
            high resolution map of the oscillation probs,
        """

        #Get the finely binned maps as implemented in the derived class
        logging.info('Retrieving finely binned maps')
        with Timer(verbose=False) as t:
            fine_maps = self.get_osc_probLT_dict(**kwargs)
        print "       ==> elapsed time to get all fine maps: %s sec"%t.secs

        logging.info("Smoothing fine maps...")
        smoothed_maps = {}
        smoothed_maps['ebins'] = self.ebins
        smoothed_maps['czbins'] = self.czbins

        with Timer(verbose=False) as t:
            for from_nu, tomap_dict in fine_maps.items():
                if 'vals' in from_nu: continue
                new_tomaps = {}
                for to_nu, pvals in tomap_dict.items():
                    logging.debug("Getting smoothed map %s/%s"%(from_nu,to_nu))

                    new_tomaps[to_nu] = get_smoothed_map(
                        pvals,fine_maps['evals'],fine_maps['czvals'],
                        self.ebins, self.czbins)

                smoothed_maps[from_nu] = new_tomaps

        tprofile.debug("       ==> elapsed time to smooth maps: %s sec"%t.secs)

        return smoothed_maps
示例#4
0
文件: vbwkde.py 项目: thehrh/pisa-1
def test_fbwkde():
    """Test speed of fbwkde implementation"""
    n_samp = int(1e4)
    n_dct = int(2**12)
    n_eval = int(1e4)
    x = np.linspace(0, 20, n_eval)
    np.random.seed(0)
    times = []
    for _ in range(3):
        enuerr = np.random.noncentral_chisquare(df=3, nonc=1, size=n_samp)
        t0 = time()
        fbwkde(data=enuerr, n_dct=n_dct, evaluate_at=x)
        times.append(time() - t0)
    tprofile.debug(
        'median time to run fbwkde, %d samples %d dct, eval. at %d points: %f'
        ' ms', n_samp, n_dct, n_eval,
        np.median(times) * 1000)
    logging.info('<< PASS : test_fbwkde >>')
示例#5
0
文件: vbwkde.py 项目: thehrh/pisa-1
def test_vbwkde():
    """Test speed of unweighted vbwkde implementation"""
    n_samp = int(1e4)
    n_dct = int(2**12)
    n_eval = int(5e3)
    n_addl = 0
    x = np.linspace(0, 20, n_samp)
    np.random.seed(0)
    times = []
    for _ in range(3):
        enuerr = np.random.noncentral_chisquare(df=3, nonc=1, size=n_eval)
        t0 = time()
        vbwkde(data=enuerr, n_dct=n_dct, evaluate_at=x, n_addl_iter=n_addl)
        times.append(time() - t0)
    tprofile.debug(
        'median time to run vbwkde, %d samples %d dct %d addl iter, eval. at'
        ' %d points: %f ms', n_samp, n_dct, n_addl, n_eval,
        np.median(times) * 1e3)
    logging.info('<< PASS : test_vbwkde >>')
示例#6
0
    def get_template_no_osc(self, params):
        '''
        Runs template making chain, but without oscillations
        '''

        logging.info("STAGE 1: Getting Atm Flux maps...")
        with Timer() as t:
            flux_maps = get_flux_maps(self.flux_service, self.ebins,
                                      self.czbins, **params)
        tprofile.debug("==> elapsed time for flux stage: %s sec" % t.secs)

        # Skipping oscillation stage...
        logging.info("  >>Skipping Stage 2 in no oscillations case...")
        flavours = ['nutau', 'nutau_bar']
        # Create the empty nutau maps:
        test_map = flux_maps['nue']
        for flav in flavours:
            flux_maps[flav] = {
                'map': np.zeros_like(test_map['map']),
                'ebins': np.zeros_like(test_map['ebins']),
                'czbins': np.zeros_like(test_map['czbins'])
            }

        logging.info("STAGE 3: Getting event rate true maps...")
        with Timer() as t:
            event_rate_maps = get_event_rates(flux_maps, self.aeff_service,
                                              **params)
        tprofile.debug("==> elapsed time for aeff stage: %s sec" % t.secs)

        logging.info("STAGE 4: Getting event rate reco maps...")
        with Timer() as t:
            event_rate_reco_maps = get_reco_maps(event_rate_maps,
                                                 self.reco_service, **params)
        tprofile.debug("==> elapsed time for reco stage: %s sec" % t.secs)

        logging.info("STAGE 5: Getting pid maps...")
        with Timer(verbose=False) as t:
            final_event_rate = get_pid_maps(event_rate_reco_maps,
                                            self.pid_service)
        tprofile.debug("==> elapsed time for pid stage: %s sec" % t.secs)

        return final_event_rate
示例#7
0
文件: gaussians.py 项目: terliuk/pisa
def test_gaussians():
    """Test `gaussians` function"""
    n_gaus = [1, 10, 100, 1000, 10000]
    n_eval = int(1e4)

    x = np.linspace(-20, 20, n_eval)
    np.random.seed(0)
    mu_sigma_weight_sets = [(np.linspace(-50, 50,
                                         n), np.linspace(0.5, 100,
                                                         n), np.random.rand(n))
                            for n in n_gaus]

    timings = OrderedDict()
    for impl in GAUS_IMPLEMENTATIONS:
        timings[impl] = []

    for mus, sigmas, weights in mu_sigma_weight_sets:
        if not isinstance(mus, Iterable):
            mus = [mus]
            sigmas = [sigmas]
            weights = [weights]
        ref_unw = np.sum(
            [stats.norm.pdf(x, loc=m, scale=s) for m, s in zip(mus, sigmas)],
            axis=0) / len(mus)
        ref_w = np.sum([
            stats.norm.pdf(x, loc=m, scale=s) * w
            for m, s, w in zip(mus, sigmas, weights)
        ],
                       axis=0) / np.sum(weights)
        for impl in GAUS_IMPLEMENTATIONS:
            t0 = time()
            test_unw = gaussians(x,
                                 mu=mus,
                                 sigma=sigmas,
                                 weights=None,
                                 implementation=impl)
            dt_unw = time() - t0
            t0 = time()
            test_w = gaussians(x,
                               mu=mus,
                               sigma=sigmas,
                               weights=weights,
                               implementation=impl)
            dt_w = time() - t0
            timings[impl].append(
                (np.round(dt_unw * 1000,
                          decimals=3), np.round(dt_w * 1000, decimals=3)))
            err_msgs = []
            if not recursiveEquality(test_unw, ref_unw):
                err_msgs.append(
                    'BAD RESULT (unweighted), n_gaus=%d, implementation='
                    '"%s", max. abs. fract. diff.: %s' %
                    (len(mus), impl, np.max(np.abs((test_unw / ref_unw - 1)))))
            if not recursiveEquality(test_w, ref_w):
                err_msgs.append(
                    'BAD RESULT (weighted), n_gaus=%d, implementation="%s"'
                    ', max. abs. fract. diff.: %s' %
                    (len(mus), impl, np.max(np.abs((test_w / ref_w - 1)))))
            if err_msgs:
                for err_msg in err_msgs:
                    logging.error(err_msg)
                raise ValueError('\n'.join(err_msgs))

    tprofile.debug(
        'gaussians() timings (unweighted) (Note:OMP_NUM_THREADS=%d; evaluated'
        ' at %.0e points)', OMP_NUM_THREADS, n_eval)
    timings_str = '  '.join([format(t, '10d') for t in n_gaus])
    tprofile.debug(' ' * 30 + 'Number of gaussians'.center(59))
    tprofile.debug('         %15s       %s', 'impl.', timings_str)
    timings_str = '  '.join(['-' * 10 for t in n_gaus])
    tprofile.debug('         %15s       %s', '-' * 15, timings_str)
    for impl in GAUS_IMPLEMENTATIONS:
        # only report timings for unweighted case
        timings_str = '  '.join([format(t[0], '10.3f') for t in timings[impl]])
        tprofile.debug('Timings, %15s (ms): %s', impl, timings_str)
    logging.info('<< PASS : test_gaussians >>')