示例#1
0
def main():
    import global_def
    from optparse import OptionParser
    from EMAN2 import EMUtil
    import os
    import sys
    from time import time

    progname = os.path.basename(sys.argv[0])
    usage = progname + " proj_stack output_averages --MPI"
    parser = OptionParser(usage, version=SPARXVERSION)

    parser.add_option("--img_per_group",
                      type="int",
                      default=100,
                      help="number of images per group")
    parser.add_option("--radius",
                      type="int",
                      default=-1,
                      help="radius for alignment")
    parser.add_option(
        "--xr",
        type="string",
        default="2 1",
        help="range for translation search in x direction, search is +/xr")
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help=
        "range for translation search in y direction, search is +/yr (default = same as xr)"
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1 0.5",
        help=
        "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional"
    )
    parser.add_option(
        "--iter",
        type="int",
        default=30,
        help="number of iterations within alignment (default = 30)")
    parser.add_option(
        "--num_ali",
        type="int",
        default=5,
        help="number of alignments performed for stability (default = 5)")
    parser.add_option("--thld_err",
                      type="float",
                      default=1.0,
                      help="threshold of pixel error (default = 1.732)")
    parser.add_option(
        "--grouping",
        type="string",
        default="GRP",
        help=
        "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size"
    )
    parser.add_option(
        "--delta",
        type="float",
        default=-1.0,
        help="angular step for reference projections (required for GEV method)"
    )
    parser.add_option(
        "--fl",
        type="float",
        default=0.3,
        help="cut-off frequency of hyperbolic tangent low-pass Fourier filter")
    parser.add_option(
        "--aa",
        type="float",
        default=0.2,
        help="fall-off of hyperbolic tangent low-pass Fourier filter")
    parser.add_option("--CTF",
                      action="store_true",
                      default=False,
                      help="Consider CTF correction during the alignment ")
    parser.add_option("--MPI",
                      action="store_true",
                      default=False,
                      help="use MPI version")

    (options, args) = parser.parse_args()

    from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD
    from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT
    from applications import MPI_start_end, within_group_refinement, ali2d_ras
    from pixel_error import multi_align_stability
    from utilities import send_EMData, recv_EMData
    from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D
    from utilities import group_proj_by_phitheta, model_circle, get_input_from_string

    sys.argv = mpi_init(len(sys.argv), sys.argv)
    myid = mpi_comm_rank(MPI_COMM_WORLD)
    number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
    main_node = 0

    if len(args) == 2:
        stack = args[0]
        outdir = args[1]
    else:
        ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid)
        exit()
    if not options.MPI:
        ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid)
        exit()

    if global_def.CACHE_DISABLE:
        from utilities import disable_bdb_cache
        disable_bdb_cache()
    global_def.BATCH = True

    #if os.path.exists(outdir):  ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid)
    #mpi_barrier(MPI_COMM_WORLD)

    img_per_grp = options.img_per_group
    radius = options.radius
    ite = options.iter
    num_ali = options.num_ali
    thld_err = options.thld_err

    xrng = get_input_from_string(options.xr)
    if options.yr == "-1": yrng = xrng
    else: yrng = get_input_from_string(options.yr)
    step = get_input_from_string(options.ts)

    if myid == main_node:
        nima = EMUtil.get_image_count(stack)
        img = get_image(stack)
        nx = img.get_xsize()
        ny = img.get_ysize()
    else:
        nima = 0
        nx = 0
        ny = 0
    nima = bcast_number_to_all(nima)
    nx = bcast_number_to_all(nx)
    ny = bcast_number_to_all(ny)
    if radius == -1: radius = nx / 2 - 2
    mask = model_circle(radius, nx, nx)

    st = time()
    if options.grouping == "GRP":
        if myid == main_node:
            print "  A  ", myid, "  ", time() - st
            proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
            proj_params = []
            for i in xrange(nima):
                dp = proj_attr[i].get_params("spider")
                phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[
                    "psi"], -dp["tx"], -dp["ty"]
                proj_params.append([phi, theta, psi, s2x, s2y])

            # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta,
            # So I will briefly explain it here
            # proj_list  : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers
            #              except for the last one. Depending on the number of particles left, they will either form a
            #              group or append themselves to the last group
            # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi,
            #              theta) is the projection angle of the center of the group, delta is the range of this group
            # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates
            #              whether it should take mirror position.
            # In this program angle_list and mirror list are not of interest.

            proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(
                proj_params, img_per_grp=img_per_grp)
            del proj_params
            print "  B  number of groups  ", myid, "  ", len(
                proj_list_all), time() - st
        mpi_barrier(MPI_COMM_WORLD)

        # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies
        # we will simply assign them to main node.
        n_grp = nima / img_per_grp - 1

        # Divide proj_list_all equally to all nodes, and becomes proj_list
        proj_list = []
        for i in xrange(n_grp):
            proc_to_stay = i % number_of_proc
            if proc_to_stay == main_node:
                if myid == main_node: proj_list.append(proj_list_all[i])
            elif myid == main_node:
                mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT,
                         proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            elif myid == proc_to_stay:
                img_per_grp = mpi_recv(1, MPI_INT, main_node,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                img_per_grp = int(img_per_grp[0])
                temp = mpi_recv(img_per_grp, MPI_INT, main_node,
                                SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                proj_list.append(map(int, temp))
                del temp
            mpi_barrier(MPI_COMM_WORLD)
        print "  C  ", myid, "  ", time() - st
        if myid == main_node:
            # Assign the remaining groups to main_node
            for i in xrange(n_grp, len(proj_list_all)):
                proj_list.append(proj_list_all[i])
            del proj_list_all, angle_list, mirror_list

    #   Compute stability per projection projection direction, equal number assigned, thus overlaps
    elif options.grouping == "GEV":
        if options.delta == -1.0:
            ERROR(
                "Angular step for reference projections is required for GEV method",
                "sxproj_stability", 1)
        from utilities import even_angles, nearestk_to_refdir, getvec
        refproj = even_angles(options.delta)
        img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid)
        # Now each processor keeps its own share of reference projections
        refprojdir = refproj[img_begin:img_end]
        del refproj

        ref_ang = [0.0] * (len(refprojdir) * 2)
        for i in xrange(len(refprojdir)):
            ref_ang[i * 2] = refprojdir[0][0]
            ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1

        print "  A  ", myid, "  ", time() - st
        proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
        #  the solution below is very slow, do not use it unless there is a problem with the i/O
        """
		for i in xrange(number_of_proc):
			if myid == i:
				proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
			mpi_barrier(MPI_COMM_WORLD)
		"""
        print "  B  ", myid, "  ", time() - st

        proj_ang = [0.0] * (nima * 2)
        for i in xrange(nima):
            dp = proj_attr[i].get_params("spider")
            proj_ang[i * 2] = dp["phi"]
            proj_ang[i * 2 + 1] = dp["theta"]
        print "  C  ", myid, "  ", time() - st
        asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp)
        del proj_ang, ref_ang
        proj_list = []
        for i in xrange(len(refprojdir)):
            proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp])
        del asi
        print "  D  ", myid, "  ", time() - st
        #from sys import exit
        #exit()

    #   Compute stability per projection
    elif options.grouping == "PPR":
        print "  A  ", myid, "  ", time() - st
        proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
        print "  B  ", myid, "  ", time() - st
        proj_params = []
        for i in xrange(nima):
            dp = proj_attr[i].get_params("spider")
            phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[
                "psi"], -dp["tx"], -dp["ty"]
            proj_params.append([phi, theta, psi, s2x, s2y])
        img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
        print "  C  ", myid, "  ", time() - st
        from utilities import nearest_proj
        proj_list, mirror_list = nearest_proj(
            proj_params, img_per_grp,
            range(img_begin, img_begin + 1))  #range(img_begin, img_end))
        refprojdir = proj_params[img_begin:img_end]
        del proj_params, mirror_list
        print "  D  ", myid, "  ", time() - st
    else:
        ERROR("Incorrect projection grouping option", "sxproj_stability", 1)
    """
	from utilities import write_text_file
	for i in xrange(len(proj_list)):
		write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid))
	"""

    ###########################################################################################################
    # Begin stability test
    from utilities import get_params_proj, read_text_file
    #if myid == 0:
    #	from utilities import read_text_file
    #	proj_list[0] = map(int, read_text_file("lggrpp0.txt"))

    from utilities import model_blank
    aveList = [model_blank(nx, ny)] * len(proj_list)
    if options.grouping == "GRP":
        refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list)
    for i in xrange(len(proj_list)):
        print "  E  ", myid, "  ", time() - st
        class_data = EMData.read_images(stack, proj_list[i])
        #print "  R  ",myid,"  ",time()-st
        if options.CTF:
            from filter import filt_ctf
            for im in xrange(len(class_data)):  #  MEM LEAK!!
                atemp = class_data[im].copy()
                btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1)
                class_data[im] = btemp
                #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
        for im in class_data:
            try:
                t = im.get_attr(
                    "xform.align2d")  # if they are there, no need to set them!
            except:
                try:
                    t = im.get_attr("xform.projection")
                    d = t.get_params("spider")
                    set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
                except:
                    set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
        #print "  F  ",myid,"  ",time()-st
        # Here, we perform realignment num_ali times
        all_ali_params = []
        for j in xrange(num_ali):
            if (xrng[0] == 0.0 and yrng[0] == 0.0):
                avet = ali2d_ras(class_data,
                                 randomize=True,
                                 ir=1,
                                 ou=radius,
                                 rs=1,
                                 step=1.0,
                                 dst=90.0,
                                 maxit=ite,
                                 check_mirror=True,
                                 FH=options.fl,
                                 FF=options.aa)
            else:
                avet = within_group_refinement(class_data, mask, True, 1,
                                               radius, 1, xrng, yrng, step,
                                               90.0, ite, options.fl,
                                               options.aa)
            ali_params = []
            for im in xrange(len(class_data)):
                alpha, sx, sy, mirror, scale = get_params2D(class_data[im])
                ali_params.extend([alpha, sx, sy, mirror])
            all_ali_params.append(ali_params)
        #aveList[i] = avet
        #print "  G  ",myid,"  ",time()-st
        del ali_params
        # We determine the stability of this group here.
        # stable_set contains all particles deemed stable, it is a list of list
        # each list has two elements, the first is the pixel error, the second is the image number
        # stable_set is sorted based on pixel error
        #from utilities import write_text_file
        #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid)
        stable_set, mir_stab_rate, average_pix_err = multi_align_stability(
            all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1)
        #print "  H  ",myid,"  ",time()-st
        if (len(stable_set) > 5):
            stable_set_id = []
            members = []
            pix_err = []
            # First put the stable members into attr 'members' and 'pix_err'
            for s in stable_set:
                # s[1] - number in this subset
                stable_set_id.append(s[1])
                # the original image number
                members.append(proj_list[i][s[1]])
                pix_err.append(s[0])
            # Then put the unstable members into attr 'members' and 'pix_err'
            from fundamentals import rot_shift2D
            avet.to_zero()
            if options.grouping == "GRP":
                aphi = 0.0
                atht = 0.0
                vphi = 0.0
                vtht = 0.0
            l = -1
            for j in xrange(len(proj_list[i])):
                #  Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses
                if j in stable_set_id:
                    l += 1
                    avet += rot_shift2D(class_data[j], stable_set[l][2][0],
                                        stable_set[l][2][1],
                                        stable_set[l][2][2],
                                        stable_set[l][2][3])
                    if options.grouping == "GRP":
                        phi, theta, psi, sxs, sys = get_params_proj(
                            class_data[j])
                        if (theta > 90.0):
                            phi = (phi + 540.0) % 360.0
                            theta = 180.0 - theta
                        aphi += phi
                        atht += theta
                        vphi += phi * phi
                        vtht += theta * theta
                else:
                    members.append(proj_list[i][j])
                    pix_err.append(99999.99)
            aveList[i] = avet.copy()
            if l > 1:
                l += 1
                aveList[i] /= l
                if options.grouping == "GRP":
                    aphi /= l
                    atht /= l
                    vphi = (vphi - l * aphi * aphi) / l
                    vtht = (vtht - l * atht * atht) / l
                    from math import sqrt
                    refprojdir[i] = [
                        aphi, atht,
                        (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0
                    ]

            # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION
            aveList[i].set_attr('members', members)
            aveList[i].set_attr('refprojdir', refprojdir[i])
            aveList[i].set_attr('pixerr', pix_err)
        else:
            print " empty group ", i, refprojdir[i]
            aveList[i].set_attr('members', [-1])
            aveList[i].set_attr('refprojdir', refprojdir[i])
            aveList[i].set_attr('pixerr', [99999.])

    del class_data

    if myid == main_node:
        km = 0
        for i in xrange(number_of_proc):
            if i == main_node:
                for im in xrange(len(aveList)):
                    aveList[im].write_image(args[1], km)
                    km += 1
            else:
                nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                              MPI_COMM_WORLD)
                nl = int(nl[0])
                for im in xrange(nl):
                    ave = recv_EMData(i, im + i + 70000)
                    nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                                  MPI_COMM_WORLD)
                    nm = int(nm[0])
                    members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL,
                                       MPI_COMM_WORLD)
                    ave.set_attr('members', map(int, members))
                    members = mpi_recv(nm, MPI_FLOAT, i,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    ave.set_attr('pixerr', map(float, members))
                    members = mpi_recv(3, MPI_FLOAT, i,
                                       SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
                    ave.set_attr('refprojdir', map(float, members))
                    ave.write_image(args[1], km)
                    km += 1
    else:
        mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL,
                 MPI_COMM_WORLD)
        for im in xrange(len(aveList)):
            send_EMData(aveList[im], main_node, im + myid + 70000)
            members = aveList[im].get_attr('members')
            mpi_send(len(members), 1, MPI_INT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            mpi_send(members, len(members), MPI_INT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            members = aveList[im].get_attr('pixerr')
            mpi_send(members, len(members), MPI_FLOAT, main_node,
                     SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            try:
                members = aveList[im].get_attr('refprojdir')
                mpi_send(members, 3, MPI_FLOAT, main_node,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)
            except:
                mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node,
                         SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD)

    global_def.BATCH = False
    mpi_barrier(MPI_COMM_WORLD)
    from mpi import mpi_finalize
    mpi_finalize()
示例#2
0
def main():
	from utilities import get_input_from_string
	progname = os.path.basename(sys.argv[0])
	usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables"
	parser = OptionParser(usage,version=SPARXVERSION)
	parser.add_option("--radius",       type="int",              default=-1,          help=" particle radius for alignment")
	parser.add_option("--xr",           type="string"      ,     default="2 1",       help="range for translation search in x direction, search is +/xr (default 2,1)")
	parser.add_option("--yr",           type="string"      ,     default="-1",        help="range for translation search in y direction, search is +/yr (default = same as xr)")
	parser.add_option("--ts",           type="string"      ,     default="1 0.5",     help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)")
	parser.add_option("--thld_err",     type="float",            default=0.75,        help="threshld of pixel error (default = 0.75)")
	parser.add_option("--num_ali",      type="int",              default=5,           help="number of alignments performed for stability (default = 5)")
	parser.add_option("--maxit",        type="int",              default=30,          help="number of iterations for each xr (default = 30)")
	parser.add_option("--fl",           type="float"       ,     default=0.3,         help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)")
	parser.add_option("--aa",           type="float"       ,     default=0.2,         help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)")
	parser.add_option("--CTF",          action="store_true",     default=False,       help="Use CTF correction during the alignment ")
	parser.add_option("--verbose",      action="store_true",     default=False,       help="print individual pixel error (default = False)")
	parser.add_option("--stables",		action="store_true",	 default=False,	      help="output the stable particles number in file (default = False)")
	parser.add_option("--method",		type="string"      ,	 default=" ",	      help="SHC (standard method is default when flag is ommitted)")
	(options, args) = parser.parse_args()
	if len(args) != 1 and len(args) != 2:
    		print "usage: " + usage
    		print "Please run '" + progname + " -h' for detailed options"
	else:
		if global_def.CACHE_DISABLE:
			from utilities import disable_bdb_cache
			disable_bdb_cache()

		from applications   import within_group_refinement, ali2d_ras
		from pixel_error    import multi_align_stability
		from utilities      import write_text_file, write_text_row

		global_def.BATCH = True

		xrng        = get_input_from_string(options.xr)
		if  options.yr == "-1":  yrng = xrng
		else          :  yrng = get_input_from_string(options.yr)
		step        = get_input_from_string(options.ts)

		class_data = EMData.read_images(args[0])

		nx = class_data[0].get_xsize()
		ou = options.radius
		num_ali = options.num_ali
		if ou == -1: ou = nx/2-2
		from utilities import model_circle, get_params2D, set_params2D
		mask = model_circle(ou, nx, nx)

		if options.CTF :
			from filter import filt_ctf
			for im in xrange(len(class_data)):
				#  Flip phases
				class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
		for im in class_data:
			im.set_attr("previousmax", -1.0e10)
			try:
				t = im.get_attr("xform.align2d") # if they are there, no need to set them!
			except:
				try:
					t = im.get_attr("xform.projection")
					d = t.get_params("spider")
					set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
				except:
					set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
		all_ali_params = []

		for ii in xrange(num_ali):
			ali_params = []
			if options.verbose:
				ALPHA = []
				SX = []
				SY = []
				MIRROR = []
			if( xrng[0] == 0.0 and yrng[0] == 0.0 ):
				avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \
						maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa)
			else:
				avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \
						maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method)
				from utilities import info
				#print "  avet  ",info(avet)
			for im in class_data:
				alpha, sx, sy, mirror, scale = get_params2D(im)
				ali_params.extend([alpha, sx, sy, mirror])
				if options.verbose:
					ALPHA.append(alpha)
					SX.append(sx)
					SY.append(sy)
					MIRROR.append(mirror)
			all_ali_params.append(ali_params)
			if options.verbose:
				write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d"%ii)
		"""
		avet = class_data[0]
		from utilities import read_text_file
		all_ali_params = []
		for ii in xrange(5):
			temp = read_text_file( "ali_params_run_%d"%ii,-1)
			uuu = []
			for k in xrange(len(temp[0])):
				uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]])
			all_ali_params.append(uuu)


		"""

		stable_set, mir_stab_rate, pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2*ou+1)
		print "%4s %20s %20s %20s %30s %6.2f"%("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of",options.thld_err)
		print "Average stat: %10d %20d %20.2f   %15.2f"%( len(class_data), len(stable_set), mir_stab_rate, pix_err)
		if( len(stable_set) > 0):
			if options.stables:
				stab_mem = [[0,0.0,0] for j in xrange(len(stable_set))]
				for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j]
				write_text_row(stab_mem, "stable_particles.txt")

			stable_set_id = []
			particle_pixerr = []
			for s in stable_set:
				stable_set_id.append(s[1])
				particle_pixerr.append(s[0])
			from fundamentals import rot_shift2D
			avet.to_zero()
			l = -1
			print "average parameters:  angle, x-shift, y-shift, mirror"
			for j in stable_set_id:
				l += 1
				print " %4d  %4d  %12.2f %12.2f %12.2f        %1d"%(l,j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]))
				avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] )
			avet /= (l+1)
			avet.set_attr('members', stable_set_id)
			avet.set_attr('pix_err', pix_err)
			avet.set_attr('pixerr', particle_pixerr)
			avet.write_image(args[1])



		global_def.BATCH = False
示例#3
0
 def internal_test_conf(self, a1, a2, d):
     from pixel_error import align_diff_params, multi_align_stability
     
     # number of images
     N = len(a1) / 4
     
     # ideal G matrices (we assumed that the last one always equals 0)
     alpha, sx, sy, mirror = align_diff_params(a1, a2)  # I am not sure that it is a global solution for L=2...
     G1 = Transform({"type":"2D","alpha":alpha,"tx":sx ,"ty":sy ,"mirror":mirror,"scale":1.0})
     G2 = Transform({"type":"2D","alpha":0.0  ,"tx":0.0,"ty":0.0,"mirror":0     ,"scale":1.0})
     
     #print "G1=", G1
     
     # ideal H matrices and pixel errors
     H = []
     pixel_error = []
     for i in xrange(N):
         T1 = Transform({"type":"2D","alpha":a1[4*i+0],"tx":a1[4*i+1],"ty":a1[4*i+2],"mirror":a1[4*i+3],"scale":1.0})
         T2 = Transform({"type":"2D","alpha":a2[4*i+0],"tx":a2[4*i+1],"ty":a2[4*i+2],"mirror":a2[4*i+3],"scale":1.0})
         GT1 = G1 * T1
         GT1_alpha = GT1.get_params("2D")["alpha"]
         GT1_tx    = GT1.get_params("2D")["tx"   ]
         GT1_ty    = GT1.get_params("2D")["ty"   ]
         GT2 = G2 * T2
         GT2_alpha = GT2.get_params("2D")["alpha"]
         GT2_tx    = GT2.get_params("2D")["tx"   ]
         GT2_ty    = GT2.get_params("2D")["ty"   ]
         # fit period
         while GT1_alpha < GT2_alpha - 180.0:
             GT1_alpha += 360.0
         while GT1_alpha > GT2_alpha + 180.0:
             GT1_alpha -= 360.0
         # H matrix
         H_alpha  = (GT1_alpha + GT2_alpha) / 2
         H_tx     = (GT1_tx    + GT2_tx   ) / 2
         H_ty     = (GT1_ty    + GT2_ty   ) / 2
         H_mirror = GT1.get_params("2D")["mirror"]
         self.assertEqual( H_mirror, GT2.get_params("2D")["mirror"] )
         H.append( Transform({"type":"2D","alpha":H_alpha,"tx":H_tx,"ty":H_ty,"mirror":H_mirror,"scale":1.0}) )
         #pixel error
         sum_sin = sin( GT1_alpha * pi / 180.0 ) + sin( GT2_alpha * pi / 180.0 )
         sum_cos = cos( GT1_alpha * pi / 180.0 ) + cos( GT2_alpha * pi / 180.0 )
         var_sx = (GT1_tx - GT2_tx)**2 / 2
         var_sy = (GT1_ty - GT2_ty)**2 / 2
         squared_pixel_error = (d/2)**2 * (1 - sqrt(sum_sin**2 + sum_cos**2) / 2) + var_sx + var_sy
         pixel_error.append( sqrt(squared_pixel_error) )
     
     # function being tested
     stable_set, mirror_consistent_rate, pix_err = multi_align_stability([a1,a2], err_thld=99999.0, print_individual=False, d=d)
     
     # verification of H matrices and pixel errors
     self.assertEqual( len(stable_set), N )
     for sse in stable_set:
         pixerr = sse[0]
         i      = sse[1]
         alpha  = sse[2][0]
         sx     = sse[2][1]
         sy     = sse[2][2]
         mirror = sse[2][3]
         # fit alpha into proper period
         while alpha < H[i].get_params("2D")["alpha"] - 180.0:
             alpha += 360.0
         while alpha > H[i].get_params("2D")["alpha"] + 180.0:
             alpha -= 360.0
         # allowed errors
         allowed_mismatch_angle  = 5.0
         allowed_mismatch_shift  = 0.5
         allowed_mismatch_pixerr = max( 0.1, (0.05*pixel_error[i]) )  # error <= 5%
         # validation
         self.assertAlmostEqual( alpha , H[i].get_params("2D")["alpha" ], delta=allowed_mismatch_angle )
         self.assertAlmostEqual( sx    , H[i].get_params("2D")["tx"    ], delta=allowed_mismatch_shift )
         self.assertAlmostEqual( sy    , H[i].get_params("2D")["ty"    ], delta=allowed_mismatch_shift )
         self.assertEqual      ( mirror, H[i].get_params("2D")["mirror"])
示例#4
0
def main():
	import	global_def
	from	optparse 	import OptionParser
	from	EMAN2 		import EMUtil
	import	os
	import	sys
	from time import time

	progname = os.path.basename(sys.argv[0])
	usage = progname + " proj_stack output_averages --MPI"
	parser = OptionParser(usage, version=SPARXVERSION)

	parser.add_option("--img_per_group",type="int"         ,	default=100  ,				help="number of images per group" )
	parser.add_option("--radius", 		type="int"         ,	default=-1   ,				help="radius for alignment" )
	parser.add_option("--xr",           type="string"      ,    default="2 1",              help="range for translation search in x direction, search is +/xr")
	parser.add_option("--yr",           type="string"      ,    default="-1",               help="range for translation search in y direction, search is +/yr (default = same as xr)")
	parser.add_option("--ts",           type="string"      ,    default="1 0.5",            help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional")
	parser.add_option("--iter", 		type="int"         ,	default=30,                 help="number of iterations within alignment (default = 30)" )
	parser.add_option("--num_ali",      type="int"     	   ,    default=5,         			help="number of alignments performed for stability (default = 5)" )
	parser.add_option("--thld_err",     type="float"       ,    default=1.0,         		help="threshold of pixel error (default = 1.732)" )
	parser.add_option("--grouping" , 	type="string"      ,	default="GRP",				help="do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size")
	parser.add_option("--delta",        type="float"       ,    default=-1.0,         		help="angular step for reference projections (required for GEV method)")
	parser.add_option("--fl",           type="float"       ,    default=0.3,                help="cut-off frequency of hyperbolic tangent low-pass Fourier filter")
	parser.add_option("--aa",           type="float"       ,    default=0.2,                help="fall-off of hyperbolic tangent low-pass Fourier filter")
	parser.add_option("--CTF",          action="store_true",    default=False,              help="Consider CTF correction during the alignment ")
	parser.add_option("--MPI" , 		action="store_true",	default=False,				help="use MPI version")

	(options,args) = parser.parse_args()
	
	from mpi          import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD, MPI_TAG_UB
	from mpi          import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT
	from applications import MPI_start_end, within_group_refinement, ali2d_ras
	from pixel_error  import multi_align_stability
	from utilities    import send_EMData, recv_EMData
	from utilities    import get_image, bcast_number_to_all, set_params2D, get_params2D
	from utilities    import group_proj_by_phitheta, model_circle, get_input_from_string

	sys.argv = mpi_init(len(sys.argv), sys.argv)
	myid = mpi_comm_rank(MPI_COMM_WORLD)
	number_of_proc = mpi_comm_size(MPI_COMM_WORLD)
	main_node = 0

	if len(args) == 2:
		stack  = args[0]
		outdir = args[1]
	else:
		ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid)
		exit()
	if not options.MPI:
		ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid)
		exit()		 

	if global_def.CACHE_DISABLE:
		from utilities import disable_bdb_cache
		disable_bdb_cache()
	global_def.BATCH = True

	#if os.path.exists(outdir):  ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid)
	#mpi_barrier(MPI_COMM_WORLD)

	
	img_per_grp = options.img_per_group
	radius = options.radius
	ite = options.iter
	num_ali = options.num_ali
	thld_err = options.thld_err

	xrng        = get_input_from_string(options.xr)
	if  options.yr == "-1":  yrng = xrng
	else          :  yrng = get_input_from_string(options.yr)
	step        = get_input_from_string(options.ts)


	if myid == main_node:
		nima = EMUtil.get_image_count(stack)
		img  = get_image(stack)
		nx   = img.get_xsize()
		ny   = img.get_ysize()
	else:
		nima = 0
		nx = 0
		ny = 0
	nima = bcast_number_to_all(nima)
	nx   = bcast_number_to_all(nx)
	ny   = bcast_number_to_all(ny)
	if radius == -1: radius = nx/2-2
	mask = model_circle(radius, nx, nx)

	st = time()
	if options.grouping == "GRP":
		if myid == main_node:
			print "  A  ",myid,"  ",time()-st
			proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
			proj_params = []
			for i in xrange(nima):
				dp = proj_attr[i].get_params("spider")
				phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"]
				proj_params.append([phi, theta, psi, s2x, s2y])

			# Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta,
			# So I will briefly explain it here
			# proj_list  : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers
			#              except for the last one. Depending on the number of particles left, they will either form a
			#              group or append themselves to the last group
			# angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, 
			#              theta) is the projection angle of the center of the group, delta is the range of this group
			# mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates
			#              whether it should take mirror position.
			# In this program angle_list and mirror list are not of interest.

			proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(proj_params, img_per_grp=img_per_grp)
			del proj_params
			print "  B  number of groups  ",myid,"  ",len(proj_list_all),time()-st
		mpi_barrier(MPI_COMM_WORLD)

		# Number of groups, actually there could be one or two more groups, since the size of the remaining group varies
		# we will simply assign them to main node.
		n_grp = nima/img_per_grp-1

		# Divide proj_list_all equally to all nodes, and becomes proj_list
		proj_list = []
		for i in xrange(n_grp):
			proc_to_stay = i%number_of_proc
			if proc_to_stay == main_node:
				if myid == main_node: 	proj_list.append(proj_list_all[i])
			elif myid == main_node:
				mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD)
				mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD)
			elif myid == proc_to_stay:
				img_per_grp = mpi_recv(1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
				img_per_grp = int(img_per_grp[0])
				temp = mpi_recv(img_per_grp, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
				proj_list.append(map(int, temp))
				del temp
			mpi_barrier(MPI_COMM_WORLD)
		print "  C  ",myid,"  ",time()-st
		if myid == main_node:
			# Assign the remaining groups to main_node
			for i in xrange(n_grp, len(proj_list_all)):
				proj_list.append(proj_list_all[i])
			del proj_list_all, angle_list, mirror_list


	#   Compute stability per projection projection direction, equal number assigned, thus overlaps
	elif options.grouping == "GEV":
		if options.delta == -1.0: ERROR("Angular step for reference projections is required for GEV method","sxproj_stability",1)
		from utilities import even_angles, nearestk_to_refdir, getvec
		refproj = even_angles(options.delta)
		img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid)
		# Now each processor keeps its own share of reference projections
		refprojdir = refproj[img_begin: img_end]
		del refproj

		ref_ang = [0.0]*(len(refprojdir)*2)
		for i in xrange(len(refprojdir)):
			ref_ang[i*2]   = refprojdir[0][0]
			ref_ang[i*2+1] = refprojdir[0][1]+i*0.1

		print "  A  ",myid,"  ",time()-st
		proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
		#  the solution below is very slow, do not use it unless there is a problem with the i/O
		"""
		for i in xrange(number_of_proc):
			if myid == i:
				proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
			mpi_barrier(MPI_COMM_WORLD)
		"""
		print "  B  ",myid,"  ",time()-st

		proj_ang = [0.0]*(nima*2)
		for i in xrange(nima):
			dp = proj_attr[i].get_params("spider")
			proj_ang[i*2]   = dp["phi"]
			proj_ang[i*2+1] = dp["theta"]
		print "  C  ",myid,"  ",time()-st
		asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp)
		del proj_ang, ref_ang
		proj_list = []
		for i in xrange(len(refprojdir)):
			proj_list.append(asi[i*img_per_grp:(i+1)*img_per_grp])
		del asi
		print "  D  ",myid,"  ",time()-st
		#from sys import exit
		#exit()


	#   Compute stability per projection
	elif options.grouping == "PPR":
		print "  A  ",myid,"  ",time()-st
		proj_attr = EMUtil.get_all_attributes(stack, "xform.projection")
		print "  B  ",myid,"  ",time()-st
		proj_params = []
		for i in xrange(nima):
			dp = proj_attr[i].get_params("spider")
			phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"]
			proj_params.append([phi, theta, psi, s2x, s2y])
		img_begin, img_end = MPI_start_end(nima, number_of_proc, myid)
		print "  C  ",myid,"  ",time()-st
		from utilities import nearest_proj
		proj_list, mirror_list = nearest_proj(proj_params, img_per_grp, range(img_begin, img_begin+1))#range(img_begin, img_end))
		refprojdir = proj_params[img_begin: img_end]
		del proj_params, mirror_list
		print "  D  ",myid,"  ",time()-st
	else:  ERROR("Incorrect projection grouping option","sxproj_stability",1)
	"""
	from utilities import write_text_file
	for i in xrange(len(proj_list)):
		write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid))
	"""

	###########################################################################################################
	# Begin stability test
	from utilities import get_params_proj, read_text_file
	#if myid == 0:
	#	from utilities import read_text_file
	#	proj_list[0] = map(int, read_text_file("lggrpp0.txt"))


	from utilities import model_blank
	aveList = [model_blank(nx,ny)]*len(proj_list)
	if options.grouping == "GRP":  refprojdir = [[0.0,0.0,-1.0]]*len(proj_list)
	for i in xrange(len(proj_list)):
		print "  E  ",myid,"  ",time()-st
		class_data = EMData.read_images(stack, proj_list[i])
		#print "  R  ",myid,"  ",time()-st
		if options.CTF :
			from filter import filt_ctf
			for im in xrange(len(class_data)):  #  MEM LEAK!!
				atemp = class_data[im].copy()
				btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1)
				class_data[im] = btemp
				#class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
		for im in class_data:
			try:
				t = im.get_attr("xform.align2d") # if they are there, no need to set them!
			except:
				try:
					t = im.get_attr("xform.projection")
					d = t.get_params("spider")
					set_params2D(im, [0.0,-d["tx"],-d["ty"],0,1.0])
				except:
					set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
		#print "  F  ",myid,"  ",time()-st
		# Here, we perform realignment num_ali times
		all_ali_params = []
		for j in xrange(num_ali):
			if( xrng[0] == 0.0 and yrng[0] == 0.0 ):
				avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = radius, rs = 1, step = 1.0, dst = 90.0, maxit = ite, check_mirror = True, FH=options.fl, FF=options.aa)
			else:
				avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa)
			ali_params = []
			for im in xrange(len(class_data)):
				alpha, sx, sy, mirror, scale = get_params2D(class_data[im])
				ali_params.extend( [alpha, sx, sy, mirror] )
			all_ali_params.append(ali_params)
		#aveList[i] = avet
		#print "  G  ",myid,"  ",time()-st
		del ali_params
		# We determine the stability of this group here.
		# stable_set contains all particles deemed stable, it is a list of list
		# each list has two elements, the first is the pixel error, the second is the image number
		# stable_set is sorted based on pixel error
		#from utilities import write_text_file
		#write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid)
		stable_set, mir_stab_rate, average_pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, thld_err, False, 2*radius+1)
		#print "  H  ",myid,"  ",time()-st
		if(len(stable_set) > 5):
			stable_set_id = []
			members = []
			pix_err = []
			# First put the stable members into attr 'members' and 'pix_err'
			for s in stable_set:
				# s[1] - number in this subset
				stable_set_id.append(s[1])
				# the original image number
				members.append(proj_list[i][s[1]])
				pix_err.append(s[0])
			# Then put the unstable members into attr 'members' and 'pix_err'
			from fundamentals import rot_shift2D
			avet.to_zero()
			if options.grouping == "GRP":
				aphi = 0.0
				atht = 0.0
				vphi = 0.0
				vtht = 0.0
			l = -1
			for j in xrange(len(proj_list[i])):
				#  Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses
				if j in stable_set_id:
					l += 1
					avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] )
					if options.grouping == "GRP":
						phi, theta, psi, sxs, sys = get_params_proj(class_data[j])
						if( theta > 90.0):
							phi = (phi+540.0)%360.0
							theta = 180.0 - theta
						aphi += phi
						atht += theta
						vphi += phi*phi
						vtht += theta*theta
				else:
					members.append(proj_list[i][j])
					pix_err.append(99999.99)
			aveList[i] = avet.copy()
			if l>1 :
				l += 1
				aveList[i] /= l
				if options.grouping == "GRP":
					aphi /= l
					atht /= l
					vphi = (vphi - l*aphi*aphi)/l
					vtht = (vtht - l*atht*atht)/l
					from math import sqrt
					refprojdir[i] = [aphi, atht, (sqrt(max(vphi,0.0))+sqrt(max(vtht,0.0)))/2.0]

			# Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION
			aveList[i].set_attr('members', members)
			aveList[i].set_attr('refprojdir',refprojdir[i])
			aveList[i].set_attr('pixerr', pix_err)
		else:
			print  " empty group ",i, refprojdir[i]
			aveList[i].set_attr('members',[-1])
			aveList[i].set_attr('refprojdir',refprojdir[i])
			aveList[i].set_attr('pixerr', [99999.])

	del class_data

	if myid == main_node:
		km = 0
		for i in xrange(number_of_proc):
			if i == main_node :
				for im in xrange(len(aveList)):
					aveList[im].write_image(args[1], km)
					km += 1
			else:
				nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
				nl = int(nl[0])
				for im in xrange(nl):
					ave = recv_EMData(i, im+i+70000)
					nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
					nm = int(nm[0])
					members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD)
					ave.set_attr('members', map(int, members))
					members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD)
					ave.set_attr('pixerr', map(float, members))
					members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD)
					ave.set_attr('refprojdir', map(float, members))
					ave.write_image(args[1], km)
					km += 1
	else:
		mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
		for im in xrange(len(aveList)):
			send_EMData(aveList[im], main_node,im+myid+70000)
			members = aveList[im].get_attr('members')
			mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
			mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
			members = aveList[im].get_attr('pixerr')
			mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
			try:
				members = aveList[im].get_attr('refprojdir')
				mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)
			except:
				mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD)

	global_def.BATCH = False
	mpi_barrier(MPI_COMM_WORLD)
	from mpi import mpi_finalize
	mpi_finalize()
示例#5
0
    def internal_test_conf(self, a1, a2, d):
        from EMAN2 import *
        from pixel_error import align_diff_params, multi_align_stability

        # number of images
        N = len(a1) / 4

        # ideal G matrices (we assumed that the last one always equals 0)
        alpha, sx, sy, mirror = align_diff_params(a1, a2)  # I am not sure that it is a global solution for L=2...
        G1 = Transform({"type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0})
        G2 = Transform({"type": "2D", "alpha": 0.0, "tx": 0.0, "ty": 0.0, "mirror": 0, "scale": 1.0})

        # print "G1=", G1

        # ideal H matrices and pixel errors
        H = []
        pixel_error = []
        for i in xrange(N):
            T1 = Transform(
                {
                    "type": "2D",
                    "alpha": a1[4 * i + 0],
                    "tx": a1[4 * i + 1],
                    "ty": a1[4 * i + 2],
                    "mirror": a1[4 * i + 3],
                    "scale": 1.0,
                }
            )
            T2 = Transform(
                {
                    "type": "2D",
                    "alpha": a2[4 * i + 0],
                    "tx": a2[4 * i + 1],
                    "ty": a2[4 * i + 2],
                    "mirror": a2[4 * i + 3],
                    "scale": 1.0,
                }
            )
            GT1 = G1 * T1
            GT1_alpha = GT1.get_params("2D")["alpha"]
            GT1_tx = GT1.get_params("2D")["tx"]
            GT1_ty = GT1.get_params("2D")["ty"]
            GT2 = G2 * T2
            GT2_alpha = GT2.get_params("2D")["alpha"]
            GT2_tx = GT2.get_params("2D")["tx"]
            GT2_ty = GT2.get_params("2D")["ty"]
            # fit period
            while GT1_alpha < GT2_alpha - 180.0:
                GT1_alpha += 360.0
            while GT1_alpha > GT2_alpha + 180.0:
                GT1_alpha -= 360.0
            # H matrix
            H_alpha = (GT1_alpha + GT2_alpha) / 2
            H_tx = (GT1_tx + GT2_tx) / 2
            H_ty = (GT1_ty + GT2_ty) / 2
            H_mirror = GT1.get_params("2D")["mirror"]
            self.assertEqual(H_mirror, GT2.get_params("2D")["mirror"])
            H.append(
                Transform({"type": "2D", "alpha": H_alpha, "tx": H_tx, "ty": H_ty, "mirror": H_mirror, "scale": 1.0})
            )
            # pixel error
            sum_sin = sin(GT1_alpha * pi / 180.0) + sin(GT2_alpha * pi / 180.0)
            sum_cos = cos(GT1_alpha * pi / 180.0) + cos(GT2_alpha * pi / 180.0)
            var_sx = (GT1_tx - GT2_tx) ** 2 / 2
            var_sy = (GT1_ty - GT2_ty) ** 2 / 2
            squared_pixel_error = (d / 2) ** 2 * (1 - sqrt(sum_sin ** 2 + sum_cos ** 2) / 2) + var_sx + var_sy
            pixel_error.append(sqrt(squared_pixel_error))

        # function being tested
        stable_set, mirror_consistent_rate, pix_err = multi_align_stability(
            [a1, a2], err_thld=99999.0, print_individual=False, d=d
        )

        # verification of H matrices and pixel errors
        self.assertEqual(len(stable_set), N)
        for sse in stable_set:
            pixerr = sse[0]
            i = sse[1]
            alpha = sse[2][0]
            sx = sse[2][1]
            sy = sse[2][2]
            mirror = sse[2][3]
            # fit alpha into proper period
            while alpha < H[i].get_params("2D")["alpha"] - 180.0:
                alpha += 360.0
            while alpha > H[i].get_params("2D")["alpha"] + 180.0:
                alpha -= 360.0
            # allowed errors
            allowed_mismatch_angle = 5.0
            allowed_mismatch_shift = 0.5
            allowed_mismatch_pixerr = max(0.1, (0.05 * pixel_error[i]))  # error <= 5%
            # validation
            self.assertAlmostEqual(alpha, H[i].get_params("2D")["alpha"], delta=allowed_mismatch_angle)
            self.assertAlmostEqual(sx, H[i].get_params("2D")["tx"], delta=allowed_mismatch_shift)
            self.assertAlmostEqual(sy, H[i].get_params("2D")["ty"], delta=allowed_mismatch_shift)
            self.assertEqual(mirror, H[i].get_params("2D")["mirror"])
示例#6
0
def main():
    from utilities import get_input_from_string

    progname = os.path.basename(sys.argv[0])
    usage = (
        progname
        + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables"
    )
    parser = OptionParser(usage, version=SPARXVERSION)
    parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment")
    parser.add_option(
        "--xr",
        type="string",
        default="2 1",
        help="range for translation search in x direction, search is +/xr (default 2,1)",
    )
    parser.add_option(
        "--yr",
        type="string",
        default="-1",
        help="range for translation search in y direction, search is +/yr (default = same as xr)",
    )
    parser.add_option(
        "--ts",
        type="string",
        default="1 0.5",
        help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)",
    )
    parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)")
    parser.add_option(
        "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)"
    )
    parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)")
    parser.add_option(
        "--fl",
        type="float",
        default=0.3,
        help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)",
    )
    parser.add_option(
        "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)"
    )
    parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ")
    parser.add_option(
        "--verbose", action="store_true", default=False, help="print individual pixel error (default = False)"
    )
    parser.add_option(
        "--stables",
        action="store_true",
        default=False,
        help="output the stable particles number in file (default = False)",
    )
    parser.add_option(
        "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)"
    )
    (options, args) = parser.parse_args()
    if len(args) != 1 and len(args) != 2:
        print "usage: " + usage
        print "Please run '" + progname + " -h' for detailed options"
    else:
        if global_def.CACHE_DISABLE:
            from utilities import disable_bdb_cache

            disable_bdb_cache()

        from applications import within_group_refinement, ali2d_ras
        from pixel_error import multi_align_stability
        from utilities import write_text_file, write_text_row

        global_def.BATCH = True

        xrng = get_input_from_string(options.xr)
        if options.yr == "-1":
            yrng = xrng
        else:
            yrng = get_input_from_string(options.yr)
        step = get_input_from_string(options.ts)

        class_data = EMData.read_images(args[0])

        nx = class_data[0].get_xsize()
        ou = options.radius
        num_ali = options.num_ali
        if ou == -1:
            ou = nx / 2 - 2
        from utilities import model_circle, get_params2D, set_params2D

        mask = model_circle(ou, nx, nx)

        if options.CTF:
            from filter import filt_ctf

            for im in xrange(len(class_data)):
                #  Flip phases
                class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1)
        for im in class_data:
            im.set_attr("previousmax", -1.0e10)
            try:
                t = im.get_attr("xform.align2d")  # if they are there, no need to set them!
            except:
                try:
                    t = im.get_attr("xform.projection")
                    d = t.get_params("spider")
                    set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0])
                except:
                    set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0])
        all_ali_params = []

        for ii in xrange(num_ali):
            ali_params = []
            if options.verbose:
                ALPHA = []
                SX = []
                SY = []
                MIRROR = []
            if xrng[0] == 0.0 and yrng[0] == 0.0:
                avet = ali2d_ras(
                    class_data,
                    randomize=True,
                    ir=1,
                    ou=ou,
                    rs=1,
                    step=1.0,
                    dst=90.0,
                    maxit=options.maxit,
                    check_mirror=True,
                    FH=options.fl,
                    FF=options.aa,
                )
            else:
                avet = within_group_refinement(
                    class_data,
                    mask,
                    True,
                    1,
                    ou,
                    1,
                    xrng,
                    yrng,
                    step,
                    90.0,
                    maxit=options.maxit,
                    FH=options.fl,
                    FF=options.aa,
                    method=options.method,
                )
                from utilities import info

                # print "  avet  ",info(avet)
            for im in class_data:
                alpha, sx, sy, mirror, scale = get_params2D(im)
                ali_params.extend([alpha, sx, sy, mirror])
                if options.verbose:
                    ALPHA.append(alpha)
                    SX.append(sx)
                    SY.append(sy)
                    MIRROR.append(mirror)
            all_ali_params.append(ali_params)
            if options.verbose:
                write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii)
        """
		avet = class_data[0]
		from utilities import read_text_file
		all_ali_params = []
		for ii in xrange(5):
			temp = read_text_file( "ali_params_run_%d"%ii,-1)
			uuu = []
			for k in xrange(len(temp[0])):
				uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]])
			all_ali_params.append(uuu)


		"""

        stable_set, mir_stab_rate, pix_err = multi_align_stability(
            all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1
        )
        print "%4s %20s %20s %20s %30s %6.2f" % (
            "",
            "Size of set",
            "Size of stable set",
            "Mirror stab rate",
            "Pixel error prior to pruning the set above threshold of",
            options.thld_err,
        )
        print "Average stat: %10d %20d %20.2f   %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err)
        if len(stable_set) > 0:
            if options.stables:
                stab_mem = [[0, 0.0, 0] for j in xrange(len(stable_set))]
                for j in xrange(len(stable_set)):
                    stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j]
                write_text_row(stab_mem, "stable_particles.txt")

            stable_set_id = []
            particle_pixerr = []
            for s in stable_set:
                stable_set_id.append(s[1])
                particle_pixerr.append(s[0])
            from fundamentals import rot_shift2D

            avet.to_zero()
            l = -1
            print "average parameters:  angle, x-shift, y-shift, mirror"
            for j in stable_set_id:
                l += 1
                print " %4d  %4d  %12.2f %12.2f %12.2f        %1d" % (
                    l,
                    j,
                    stable_set[l][2][0],
                    stable_set[l][2][1],
                    stable_set[l][2][2],
                    int(stable_set[l][2][3]),
                )
                avet += rot_shift2D(
                    class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]
                )
            avet /= l + 1
            avet.set_attr("members", stable_set_id)
            avet.set_attr("pix_err", pix_err)
            avet.set_attr("pixerr", particle_pixerr)
            avet.write_image(args[1])

        global_def.BATCH = False