def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group", type="int", default=100, help="number of images per group") parser.add_option("--radius", type="int", default=-1, help="radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option( "--yr", type="string", default="-1", help= "range for translation search in y direction, search is +/yr (default = same as xr)" ) parser.add_option( "--ts", type="string", default="1 0.5", help= "step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional" ) parser.add_option( "--iter", type="int", default=30, help="number of iterations within alignment (default = 30)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--thld_err", type="float", default=1.0, help="threshold of pixel error (default = 1.732)") parser.add_option( "--grouping", type="string", default="GRP", help= "do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size" ) parser.add_option( "--delta", type="float", default=-1.0, help="angular step for reference projections (required for GEV method)" ) parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI", action="store_true", default=False, help="use MPI version") (options, args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx / 2 - 2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta( proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ", myid, " ", len( proj_list_all), time() - st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima / img_per_grp - 1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i % number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ", myid, " ", time() - st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR( "Angular step for reference projections is required for GEV method", "sxproj_stability", 1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin:img_end] del refproj ref_ang = [0.0] * (len(refprojdir) * 2) for i in xrange(len(refprojdir)): ref_ang[i * 2] = refprojdir[0][0] ref_ang[i * 2 + 1] = refprojdir[0][1] + i * 0.1 print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ", myid, " ", time() - st proj_ang = [0.0] * (nima * 2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i * 2] = dp["phi"] proj_ang[i * 2 + 1] = dp["theta"] print " C ", myid, " ", time() - st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i * img_per_grp:(i + 1) * img_per_grp]) del asi print " D ", myid, " ", time() - st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ", myid, " ", time() - st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ", myid, " ", time() - st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp[ "psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ", myid, " ", time() - st from utilities import nearest_proj proj_list, mirror_list = nearest_proj( proj_params, img_per_grp, range(img_begin, img_begin + 1)) #range(img_begin, img_end)) refprojdir = proj_params[img_begin:img_end] del proj_params, mirror_list print " D ", myid, " ", time() - st else: ERROR("Incorrect projection grouping option", "sxproj_stability", 1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx, ny)] * len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0, 0.0, -1.0]] * len(proj_list) for i in xrange(len(proj_list)): print " E ", myid, " ", time() - st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr( "xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if (xrng[0] == 0.0 and yrng[0] == 0.0): avet = ali2d_ras(class_data, randomize=True, ir=1, ou=radius, rs=1, step=1.0, dst=90.0, maxit=ite, check_mirror=True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend([alpha, sx, sy, mirror]) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, thld_err, False, 2 * radius + 1) #print " H ",myid," ",time()-st if (len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3]) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj( class_data[j]) if (theta > 90.0): phi = (phi + 540.0) % 360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi * phi vtht += theta * theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l > 1: l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l * aphi * aphi) / l vtht = (vtht - l * atht * atht) / l from math import sqrt refprojdir[i] = [ aphi, atht, (sqrt(max(vphi, 0.0)) + sqrt(max(vtht, 0.0))) / 2.0 ] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ", i, refprojdir[i] aveList[i].set_attr('members', [-1]) aveList[i].set_attr('refprojdir', refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node: for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im + i + 70000) nm = mpi_recv(1, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node, im + myid + 70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) except: mpi_send([-999.0, -999.0, -999.0], 3, MPI_FLOAT, main_node, SPARX_MPI_TAG_UNIVERSAL, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def main(): from utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" parser = OptionParser(usage,version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr (default 2,1)") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)") parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)") parser.add_option("--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)") parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)") parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option("--verbose", action="store_true", default=False, help="print individual pixel error (default = False)") parser.add_option("--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)") parser.add_option("--method", type="string" , default=" ", help="SHC (standard method is default when flag is ommitted)") (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import write_text_file, write_text_row global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx/2-2 from utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in xrange(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = ou, rs = 1, step = 1.0, dst = 90.0, \ maxit = options.maxit, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, \ maxit = options.maxit, FH=options.fl, FF=options.aa, method = options.method) from utilities import info #print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d"%ii) """ avet = class_data[0] from utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2*ou+1) print "%4s %20s %20s %20s %30s %6.2f"%("", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of",options.thld_err) print "Average stat: %10d %20d %20.2f %15.2f"%( len(class_data), len(stable_set), mir_stab_rate, pix_err) if( len(stable_set) > 0): if options.stables: stab_mem = [[0,0.0,0] for j in xrange(len(stable_set))] for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from fundamentals import rot_shift2D avet.to_zero() l = -1 print "average parameters: angle, x-shift, y-shift, mirror" for j in stable_set_id: l += 1 print " %4d %4d %12.2f %12.2f %12.2f %1d"%(l,j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3])) avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) avet /= (l+1) avet.set_attr('members', stable_set_id) avet.set_attr('pix_err', pix_err) avet.set_attr('pixerr', particle_pixerr) avet.write_image(args[1]) global_def.BATCH = False
def internal_test_conf(self, a1, a2, d): from pixel_error import align_diff_params, multi_align_stability # number of images N = len(a1) / 4 # ideal G matrices (we assumed that the last one always equals 0) alpha, sx, sy, mirror = align_diff_params(a1, a2) # I am not sure that it is a global solution for L=2... G1 = Transform({"type":"2D","alpha":alpha,"tx":sx ,"ty":sy ,"mirror":mirror,"scale":1.0}) G2 = Transform({"type":"2D","alpha":0.0 ,"tx":0.0,"ty":0.0,"mirror":0 ,"scale":1.0}) #print "G1=", G1 # ideal H matrices and pixel errors H = [] pixel_error = [] for i in xrange(N): T1 = Transform({"type":"2D","alpha":a1[4*i+0],"tx":a1[4*i+1],"ty":a1[4*i+2],"mirror":a1[4*i+3],"scale":1.0}) T2 = Transform({"type":"2D","alpha":a2[4*i+0],"tx":a2[4*i+1],"ty":a2[4*i+2],"mirror":a2[4*i+3],"scale":1.0}) GT1 = G1 * T1 GT1_alpha = GT1.get_params("2D")["alpha"] GT1_tx = GT1.get_params("2D")["tx" ] GT1_ty = GT1.get_params("2D")["ty" ] GT2 = G2 * T2 GT2_alpha = GT2.get_params("2D")["alpha"] GT2_tx = GT2.get_params("2D")["tx" ] GT2_ty = GT2.get_params("2D")["ty" ] # fit period while GT1_alpha < GT2_alpha - 180.0: GT1_alpha += 360.0 while GT1_alpha > GT2_alpha + 180.0: GT1_alpha -= 360.0 # H matrix H_alpha = (GT1_alpha + GT2_alpha) / 2 H_tx = (GT1_tx + GT2_tx ) / 2 H_ty = (GT1_ty + GT2_ty ) / 2 H_mirror = GT1.get_params("2D")["mirror"] self.assertEqual( H_mirror, GT2.get_params("2D")["mirror"] ) H.append( Transform({"type":"2D","alpha":H_alpha,"tx":H_tx,"ty":H_ty,"mirror":H_mirror,"scale":1.0}) ) #pixel error sum_sin = sin( GT1_alpha * pi / 180.0 ) + sin( GT2_alpha * pi / 180.0 ) sum_cos = cos( GT1_alpha * pi / 180.0 ) + cos( GT2_alpha * pi / 180.0 ) var_sx = (GT1_tx - GT2_tx)**2 / 2 var_sy = (GT1_ty - GT2_ty)**2 / 2 squared_pixel_error = (d/2)**2 * (1 - sqrt(sum_sin**2 + sum_cos**2) / 2) + var_sx + var_sy pixel_error.append( sqrt(squared_pixel_error) ) # function being tested stable_set, mirror_consistent_rate, pix_err = multi_align_stability([a1,a2], err_thld=99999.0, print_individual=False, d=d) # verification of H matrices and pixel errors self.assertEqual( len(stable_set), N ) for sse in stable_set: pixerr = sse[0] i = sse[1] alpha = sse[2][0] sx = sse[2][1] sy = sse[2][2] mirror = sse[2][3] # fit alpha into proper period while alpha < H[i].get_params("2D")["alpha"] - 180.0: alpha += 360.0 while alpha > H[i].get_params("2D")["alpha"] + 180.0: alpha -= 360.0 # allowed errors allowed_mismatch_angle = 5.0 allowed_mismatch_shift = 0.5 allowed_mismatch_pixerr = max( 0.1, (0.05*pixel_error[i]) ) # error <= 5% # validation self.assertAlmostEqual( alpha , H[i].get_params("2D")["alpha" ], delta=allowed_mismatch_angle ) self.assertAlmostEqual( sx , H[i].get_params("2D")["tx" ], delta=allowed_mismatch_shift ) self.assertAlmostEqual( sy , H[i].get_params("2D")["ty" ], delta=allowed_mismatch_shift ) self.assertEqual ( mirror, H[i].get_params("2D")["mirror"])
def main(): import global_def from optparse import OptionParser from EMAN2 import EMUtil import os import sys from time import time progname = os.path.basename(sys.argv[0]) usage = progname + " proj_stack output_averages --MPI" parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--img_per_group",type="int" , default=100 , help="number of images per group" ) parser.add_option("--radius", type="int" , default=-1 , help="radius for alignment" ) parser.add_option("--xr", type="string" , default="2 1", help="range for translation search in x direction, search is +/xr") parser.add_option("--yr", type="string" , default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)") parser.add_option("--ts", type="string" , default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional") parser.add_option("--iter", type="int" , default=30, help="number of iterations within alignment (default = 30)" ) parser.add_option("--num_ali", type="int" , default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--thld_err", type="float" , default=1.0, help="threshold of pixel error (default = 1.732)" ) parser.add_option("--grouping" , type="string" , default="GRP", help="do grouping of projections: PPR - per projection, GRP - different size groups, exclusive (default), GEV - grouping equal size") parser.add_option("--delta", type="float" , default=-1.0, help="angular step for reference projections (required for GEV method)") parser.add_option("--fl", type="float" , default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter") parser.add_option("--aa", type="float" , default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter") parser.add_option("--CTF", action="store_true", default=False, help="Consider CTF correction during the alignment ") parser.add_option("--MPI" , action="store_true", default=False, help="use MPI version") (options,args) = parser.parse_args() from mpi import mpi_init, mpi_comm_rank, mpi_comm_size, MPI_COMM_WORLD, MPI_TAG_UB from mpi import mpi_barrier, mpi_send, mpi_recv, mpi_bcast, MPI_INT, mpi_finalize, MPI_FLOAT from applications import MPI_start_end, within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import send_EMData, recv_EMData from utilities import get_image, bcast_number_to_all, set_params2D, get_params2D from utilities import group_proj_by_phitheta, model_circle, get_input_from_string sys.argv = mpi_init(len(sys.argv), sys.argv) myid = mpi_comm_rank(MPI_COMM_WORLD) number_of_proc = mpi_comm_size(MPI_COMM_WORLD) main_node = 0 if len(args) == 2: stack = args[0] outdir = args[1] else: ERROR("incomplete list of arguments", "sxproj_stability", 1, myid=myid) exit() if not options.MPI: ERROR("Non-MPI not supported!", "sxproj_stability", myid=myid) exit() if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() global_def.BATCH = True #if os.path.exists(outdir): ERROR('Output directory exists, please change the name and restart the program', "sxproj_stability", 1, myid) #mpi_barrier(MPI_COMM_WORLD) img_per_grp = options.img_per_group radius = options.radius ite = options.iter num_ali = options.num_ali thld_err = options.thld_err xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else : yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) if myid == main_node: nima = EMUtil.get_image_count(stack) img = get_image(stack) nx = img.get_xsize() ny = img.get_ysize() else: nima = 0 nx = 0 ny = 0 nima = bcast_number_to_all(nima) nx = bcast_number_to_all(nx) ny = bcast_number_to_all(ny) if radius == -1: radius = nx/2-2 mask = model_circle(radius, nx, nx) st = time() if options.grouping == "GRP": if myid == main_node: print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) # Here is where the grouping is done, I didn't put enough annotation in the group_proj_by_phitheta, # So I will briefly explain it here # proj_list : Returns a list of list of particle numbers, each list contains img_per_grp particle numbers # except for the last one. Depending on the number of particles left, they will either form a # group or append themselves to the last group # angle_list : Also returns a list of list, each list contains three numbers (phi, theta, delta), (phi, # theta) is the projection angle of the center of the group, delta is the range of this group # mirror_list: Also returns a list of list, each list contains img_per_grp True or False, which indicates # whether it should take mirror position. # In this program angle_list and mirror list are not of interest. proj_list_all, angle_list, mirror_list = group_proj_by_phitheta(proj_params, img_per_grp=img_per_grp) del proj_params print " B number of groups ",myid," ",len(proj_list_all),time()-st mpi_barrier(MPI_COMM_WORLD) # Number of groups, actually there could be one or two more groups, since the size of the remaining group varies # we will simply assign them to main node. n_grp = nima/img_per_grp-1 # Divide proj_list_all equally to all nodes, and becomes proj_list proj_list = [] for i in xrange(n_grp): proc_to_stay = i%number_of_proc if proc_to_stay == main_node: if myid == main_node: proj_list.append(proj_list_all[i]) elif myid == main_node: mpi_send(len(proj_list_all[i]), 1, MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(proj_list_all[i], len(proj_list_all[i]), MPI_INT, proc_to_stay, MPI_TAG_UB, MPI_COMM_WORLD) elif myid == proc_to_stay: img_per_grp = mpi_recv(1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) img_per_grp = int(img_per_grp[0]) temp = mpi_recv(img_per_grp, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) proj_list.append(map(int, temp)) del temp mpi_barrier(MPI_COMM_WORLD) print " C ",myid," ",time()-st if myid == main_node: # Assign the remaining groups to main_node for i in xrange(n_grp, len(proj_list_all)): proj_list.append(proj_list_all[i]) del proj_list_all, angle_list, mirror_list # Compute stability per projection projection direction, equal number assigned, thus overlaps elif options.grouping == "GEV": if options.delta == -1.0: ERROR("Angular step for reference projections is required for GEV method","sxproj_stability",1) from utilities import even_angles, nearestk_to_refdir, getvec refproj = even_angles(options.delta) img_begin, img_end = MPI_start_end(len(refproj), number_of_proc, myid) # Now each processor keeps its own share of reference projections refprojdir = refproj[img_begin: img_end] del refproj ref_ang = [0.0]*(len(refprojdir)*2) for i in xrange(len(refprojdir)): ref_ang[i*2] = refprojdir[0][0] ref_ang[i*2+1] = refprojdir[0][1]+i*0.1 print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") # the solution below is very slow, do not use it unless there is a problem with the i/O """ for i in xrange(number_of_proc): if myid == i: proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") mpi_barrier(MPI_COMM_WORLD) """ print " B ",myid," ",time()-st proj_ang = [0.0]*(nima*2) for i in xrange(nima): dp = proj_attr[i].get_params("spider") proj_ang[i*2] = dp["phi"] proj_ang[i*2+1] = dp["theta"] print " C ",myid," ",time()-st asi = Util.nearestk_to_refdir(proj_ang, ref_ang, img_per_grp) del proj_ang, ref_ang proj_list = [] for i in xrange(len(refprojdir)): proj_list.append(asi[i*img_per_grp:(i+1)*img_per_grp]) del asi print " D ",myid," ",time()-st #from sys import exit #exit() # Compute stability per projection elif options.grouping == "PPR": print " A ",myid," ",time()-st proj_attr = EMUtil.get_all_attributes(stack, "xform.projection") print " B ",myid," ",time()-st proj_params = [] for i in xrange(nima): dp = proj_attr[i].get_params("spider") phi, theta, psi, s2x, s2y = dp["phi"], dp["theta"], dp["psi"], -dp["tx"], -dp["ty"] proj_params.append([phi, theta, psi, s2x, s2y]) img_begin, img_end = MPI_start_end(nima, number_of_proc, myid) print " C ",myid," ",time()-st from utilities import nearest_proj proj_list, mirror_list = nearest_proj(proj_params, img_per_grp, range(img_begin, img_begin+1))#range(img_begin, img_end)) refprojdir = proj_params[img_begin: img_end] del proj_params, mirror_list print " D ",myid," ",time()-st else: ERROR("Incorrect projection grouping option","sxproj_stability",1) """ from utilities import write_text_file for i in xrange(len(proj_list)): write_text_file(proj_list[i],"projlist%06d_%04d"%(i,myid)) """ ########################################################################################################### # Begin stability test from utilities import get_params_proj, read_text_file #if myid == 0: # from utilities import read_text_file # proj_list[0] = map(int, read_text_file("lggrpp0.txt")) from utilities import model_blank aveList = [model_blank(nx,ny)]*len(proj_list) if options.grouping == "GRP": refprojdir = [[0.0,0.0,-1.0]]*len(proj_list) for i in xrange(len(proj_list)): print " E ",myid," ",time()-st class_data = EMData.read_images(stack, proj_list[i]) #print " R ",myid," ",time()-st if options.CTF : from filter import filt_ctf for im in xrange(len(class_data)): # MEM LEAK!! atemp = class_data[im].copy() btemp = filt_ctf(atemp, atemp.get_attr("ctf"), binary=1) class_data[im] = btemp #class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0,-d["tx"],-d["ty"],0,1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) #print " F ",myid," ",time()-st # Here, we perform realignment num_ali times all_ali_params = [] for j in xrange(num_ali): if( xrng[0] == 0.0 and yrng[0] == 0.0 ): avet = ali2d_ras(class_data, randomize = True, ir = 1, ou = radius, rs = 1, step = 1.0, dst = 90.0, maxit = ite, check_mirror = True, FH=options.fl, FF=options.aa) else: avet = within_group_refinement(class_data, mask, True, 1, radius, 1, xrng, yrng, step, 90.0, ite, options.fl, options.aa) ali_params = [] for im in xrange(len(class_data)): alpha, sx, sy, mirror, scale = get_params2D(class_data[im]) ali_params.extend( [alpha, sx, sy, mirror] ) all_ali_params.append(ali_params) #aveList[i] = avet #print " G ",myid," ",time()-st del ali_params # We determine the stability of this group here. # stable_set contains all particles deemed stable, it is a list of list # each list has two elements, the first is the pixel error, the second is the image number # stable_set is sorted based on pixel error #from utilities import write_text_file #write_text_file(all_ali_params, "all_ali_params%03d.txt"%myid) stable_set, mir_stab_rate, average_pix_err = multi_align_stability(all_ali_params, 0.0, 10000.0, thld_err, False, 2*radius+1) #print " H ",myid," ",time()-st if(len(stable_set) > 5): stable_set_id = [] members = [] pix_err = [] # First put the stable members into attr 'members' and 'pix_err' for s in stable_set: # s[1] - number in this subset stable_set_id.append(s[1]) # the original image number members.append(proj_list[i][s[1]]) pix_err.append(s[0]) # Then put the unstable members into attr 'members' and 'pix_err' from fundamentals import rot_shift2D avet.to_zero() if options.grouping == "GRP": aphi = 0.0 atht = 0.0 vphi = 0.0 vtht = 0.0 l = -1 for j in xrange(len(proj_list[i])): # Here it will only work if stable_set_id is sorted in the increasing number, see how l progresses if j in stable_set_id: l += 1 avet += rot_shift2D(class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) if options.grouping == "GRP": phi, theta, psi, sxs, sys = get_params_proj(class_data[j]) if( theta > 90.0): phi = (phi+540.0)%360.0 theta = 180.0 - theta aphi += phi atht += theta vphi += phi*phi vtht += theta*theta else: members.append(proj_list[i][j]) pix_err.append(99999.99) aveList[i] = avet.copy() if l>1 : l += 1 aveList[i] /= l if options.grouping == "GRP": aphi /= l atht /= l vphi = (vphi - l*aphi*aphi)/l vtht = (vtht - l*atht*atht)/l from math import sqrt refprojdir[i] = [aphi, atht, (sqrt(max(vphi,0.0))+sqrt(max(vtht,0.0)))/2.0] # Here more information has to be stored, PARTICULARLY WHAT IS THE REFERENCE DIRECTION aveList[i].set_attr('members', members) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', pix_err) else: print " empty group ",i, refprojdir[i] aveList[i].set_attr('members',[-1]) aveList[i].set_attr('refprojdir',refprojdir[i]) aveList[i].set_attr('pixerr', [99999.]) del class_data if myid == main_node: km = 0 for i in xrange(number_of_proc): if i == main_node : for im in xrange(len(aveList)): aveList[im].write_image(args[1], km) km += 1 else: nl = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nl = int(nl[0]) for im in xrange(nl): ave = recv_EMData(i, im+i+70000) nm = mpi_recv(1, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) nm = int(nm[0]) members = mpi_recv(nm, MPI_INT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('members', map(int, members)) members = mpi_recv(nm, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('pixerr', map(float, members)) members = mpi_recv(3, MPI_FLOAT, i, MPI_TAG_UB, MPI_COMM_WORLD) ave.set_attr('refprojdir', map(float, members)) ave.write_image(args[1], km) km += 1 else: mpi_send(len(aveList), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) for im in xrange(len(aveList)): send_EMData(aveList[im], main_node,im+myid+70000) members = aveList[im].get_attr('members') mpi_send(len(members), 1, MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) mpi_send(members, len(members), MPI_INT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) members = aveList[im].get_attr('pixerr') mpi_send(members, len(members), MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) try: members = aveList[im].get_attr('refprojdir') mpi_send(members, 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) except: mpi_send([-999.0,-999.0,-999.0], 3, MPI_FLOAT, main_node, MPI_TAG_UB, MPI_COMM_WORLD) global_def.BATCH = False mpi_barrier(MPI_COMM_WORLD) from mpi import mpi_finalize mpi_finalize()
def internal_test_conf(self, a1, a2, d): from EMAN2 import * from pixel_error import align_diff_params, multi_align_stability # number of images N = len(a1) / 4 # ideal G matrices (we assumed that the last one always equals 0) alpha, sx, sy, mirror = align_diff_params(a1, a2) # I am not sure that it is a global solution for L=2... G1 = Transform({"type": "2D", "alpha": alpha, "tx": sx, "ty": sy, "mirror": mirror, "scale": 1.0}) G2 = Transform({"type": "2D", "alpha": 0.0, "tx": 0.0, "ty": 0.0, "mirror": 0, "scale": 1.0}) # print "G1=", G1 # ideal H matrices and pixel errors H = [] pixel_error = [] for i in xrange(N): T1 = Transform( { "type": "2D", "alpha": a1[4 * i + 0], "tx": a1[4 * i + 1], "ty": a1[4 * i + 2], "mirror": a1[4 * i + 3], "scale": 1.0, } ) T2 = Transform( { "type": "2D", "alpha": a2[4 * i + 0], "tx": a2[4 * i + 1], "ty": a2[4 * i + 2], "mirror": a2[4 * i + 3], "scale": 1.0, } ) GT1 = G1 * T1 GT1_alpha = GT1.get_params("2D")["alpha"] GT1_tx = GT1.get_params("2D")["tx"] GT1_ty = GT1.get_params("2D")["ty"] GT2 = G2 * T2 GT2_alpha = GT2.get_params("2D")["alpha"] GT2_tx = GT2.get_params("2D")["tx"] GT2_ty = GT2.get_params("2D")["ty"] # fit period while GT1_alpha < GT2_alpha - 180.0: GT1_alpha += 360.0 while GT1_alpha > GT2_alpha + 180.0: GT1_alpha -= 360.0 # H matrix H_alpha = (GT1_alpha + GT2_alpha) / 2 H_tx = (GT1_tx + GT2_tx) / 2 H_ty = (GT1_ty + GT2_ty) / 2 H_mirror = GT1.get_params("2D")["mirror"] self.assertEqual(H_mirror, GT2.get_params("2D")["mirror"]) H.append( Transform({"type": "2D", "alpha": H_alpha, "tx": H_tx, "ty": H_ty, "mirror": H_mirror, "scale": 1.0}) ) # pixel error sum_sin = sin(GT1_alpha * pi / 180.0) + sin(GT2_alpha * pi / 180.0) sum_cos = cos(GT1_alpha * pi / 180.0) + cos(GT2_alpha * pi / 180.0) var_sx = (GT1_tx - GT2_tx) ** 2 / 2 var_sy = (GT1_ty - GT2_ty) ** 2 / 2 squared_pixel_error = (d / 2) ** 2 * (1 - sqrt(sum_sin ** 2 + sum_cos ** 2) / 2) + var_sx + var_sy pixel_error.append(sqrt(squared_pixel_error)) # function being tested stable_set, mirror_consistent_rate, pix_err = multi_align_stability( [a1, a2], err_thld=99999.0, print_individual=False, d=d ) # verification of H matrices and pixel errors self.assertEqual(len(stable_set), N) for sse in stable_set: pixerr = sse[0] i = sse[1] alpha = sse[2][0] sx = sse[2][1] sy = sse[2][2] mirror = sse[2][3] # fit alpha into proper period while alpha < H[i].get_params("2D")["alpha"] - 180.0: alpha += 360.0 while alpha > H[i].get_params("2D")["alpha"] + 180.0: alpha -= 360.0 # allowed errors allowed_mismatch_angle = 5.0 allowed_mismatch_shift = 0.5 allowed_mismatch_pixerr = max(0.1, (0.05 * pixel_error[i])) # error <= 5% # validation self.assertAlmostEqual(alpha, H[i].get_params("2D")["alpha"], delta=allowed_mismatch_angle) self.assertAlmostEqual(sx, H[i].get_params("2D")["tx"], delta=allowed_mismatch_shift) self.assertAlmostEqual(sy, H[i].get_params("2D")["ty"], delta=allowed_mismatch_shift) self.assertEqual(mirror, H[i].get_params("2D")["mirror"])
def main(): from utilities import get_input_from_string progname = os.path.basename(sys.argv[0]) usage = ( progname + " stack output_average --radius=particle_radius --xr=xr --yr=yr --ts=ts --thld_err=thld_err --num_ali=num_ali --fl=fl --aa=aa --CTF --verbose --stables" ) parser = OptionParser(usage, version=SPARXVERSION) parser.add_option("--radius", type="int", default=-1, help=" particle radius for alignment") parser.add_option( "--xr", type="string", default="2 1", help="range for translation search in x direction, search is +/xr (default 2,1)", ) parser.add_option( "--yr", type="string", default="-1", help="range for translation search in y direction, search is +/yr (default = same as xr)", ) parser.add_option( "--ts", type="string", default="1 0.5", help="step size of the translation search in both directions, search is -xr, -xr+ts, 0, xr-ts, xr, can be fractional (default: 1,0.5)", ) parser.add_option("--thld_err", type="float", default=0.75, help="threshld of pixel error (default = 0.75)") parser.add_option( "--num_ali", type="int", default=5, help="number of alignments performed for stability (default = 5)" ) parser.add_option("--maxit", type="int", default=30, help="number of iterations for each xr (default = 30)") parser.add_option( "--fl", type="float", default=0.3, help="cut-off frequency of hyperbolic tangent low-pass Fourier filter (default = 0.3)", ) parser.add_option( "--aa", type="float", default=0.2, help="fall-off of hyperbolic tangent low-pass Fourier filter (default = 0.2)" ) parser.add_option("--CTF", action="store_true", default=False, help="Use CTF correction during the alignment ") parser.add_option( "--verbose", action="store_true", default=False, help="print individual pixel error (default = False)" ) parser.add_option( "--stables", action="store_true", default=False, help="output the stable particles number in file (default = False)", ) parser.add_option( "--method", type="string", default=" ", help="SHC (standard method is default when flag is ommitted)" ) (options, args) = parser.parse_args() if len(args) != 1 and len(args) != 2: print "usage: " + usage print "Please run '" + progname + " -h' for detailed options" else: if global_def.CACHE_DISABLE: from utilities import disable_bdb_cache disable_bdb_cache() from applications import within_group_refinement, ali2d_ras from pixel_error import multi_align_stability from utilities import write_text_file, write_text_row global_def.BATCH = True xrng = get_input_from_string(options.xr) if options.yr == "-1": yrng = xrng else: yrng = get_input_from_string(options.yr) step = get_input_from_string(options.ts) class_data = EMData.read_images(args[0]) nx = class_data[0].get_xsize() ou = options.radius num_ali = options.num_ali if ou == -1: ou = nx / 2 - 2 from utilities import model_circle, get_params2D, set_params2D mask = model_circle(ou, nx, nx) if options.CTF: from filter import filt_ctf for im in xrange(len(class_data)): # Flip phases class_data[im] = filt_ctf(class_data[im], class_data[im].get_attr("ctf"), binary=1) for im in class_data: im.set_attr("previousmax", -1.0e10) try: t = im.get_attr("xform.align2d") # if they are there, no need to set them! except: try: t = im.get_attr("xform.projection") d = t.get_params("spider") set_params2D(im, [0.0, -d["tx"], -d["ty"], 0, 1.0]) except: set_params2D(im, [0.0, 0.0, 0.0, 0, 1.0]) all_ali_params = [] for ii in xrange(num_ali): ali_params = [] if options.verbose: ALPHA = [] SX = [] SY = [] MIRROR = [] if xrng[0] == 0.0 and yrng[0] == 0.0: avet = ali2d_ras( class_data, randomize=True, ir=1, ou=ou, rs=1, step=1.0, dst=90.0, maxit=options.maxit, check_mirror=True, FH=options.fl, FF=options.aa, ) else: avet = within_group_refinement( class_data, mask, True, 1, ou, 1, xrng, yrng, step, 90.0, maxit=options.maxit, FH=options.fl, FF=options.aa, method=options.method, ) from utilities import info # print " avet ",info(avet) for im in class_data: alpha, sx, sy, mirror, scale = get_params2D(im) ali_params.extend([alpha, sx, sy, mirror]) if options.verbose: ALPHA.append(alpha) SX.append(sx) SY.append(sy) MIRROR.append(mirror) all_ali_params.append(ali_params) if options.verbose: write_text_file([ALPHA, SX, SY, MIRROR], "ali_params_run_%d" % ii) """ avet = class_data[0] from utilities import read_text_file all_ali_params = [] for ii in xrange(5): temp = read_text_file( "ali_params_run_%d"%ii,-1) uuu = [] for k in xrange(len(temp[0])): uuu.extend([temp[0][k],temp[1][k],temp[2][k],temp[3][k]]) all_ali_params.append(uuu) """ stable_set, mir_stab_rate, pix_err = multi_align_stability( all_ali_params, 0.0, 10000.0, options.thld_err, options.verbose, 2 * ou + 1 ) print "%4s %20s %20s %20s %30s %6.2f" % ( "", "Size of set", "Size of stable set", "Mirror stab rate", "Pixel error prior to pruning the set above threshold of", options.thld_err, ) print "Average stat: %10d %20d %20.2f %15.2f" % (len(class_data), len(stable_set), mir_stab_rate, pix_err) if len(stable_set) > 0: if options.stables: stab_mem = [[0, 0.0, 0] for j in xrange(len(stable_set))] for j in xrange(len(stable_set)): stab_mem[j] = [int(stable_set[j][1]), stable_set[j][0], j] write_text_row(stab_mem, "stable_particles.txt") stable_set_id = [] particle_pixerr = [] for s in stable_set: stable_set_id.append(s[1]) particle_pixerr.append(s[0]) from fundamentals import rot_shift2D avet.to_zero() l = -1 print "average parameters: angle, x-shift, y-shift, mirror" for j in stable_set_id: l += 1 print " %4d %4d %12.2f %12.2f %12.2f %1d" % ( l, j, stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], int(stable_set[l][2][3]), ) avet += rot_shift2D( class_data[j], stable_set[l][2][0], stable_set[l][2][1], stable_set[l][2][2], stable_set[l][2][3] ) avet /= l + 1 avet.set_attr("members", stable_set_id) avet.set_attr("pix_err", pix_err) avet.set_attr("pixerr", particle_pixerr) avet.write_image(args[1]) global_def.BATCH = False