class BackPropagationLearningDialog(QDialog): def __init__(self, network, test_data=None): QDialog.__init__(self) self.ui = Ui_LearningLauncher() self.ui.setupUi(self) self.network = network self._setup_gui() self.input_view = DataView(self.ui.learningDataView, header="Input", model=test_data, columns=network.inputs_count() + len(network.get_layer(-1).get_neurons())) # self.input_view.randomize_data() @pyqtSlot() def on_runButton_clicked(self): error_metric = ErrorUtil.get_factor(str(self.ui.errorMetricSelector.currentText()))() learning_factor = float(self.ui.learningFactorValue.text()) momentum = float(self.ui.momentumValue.text()) learning_iterations = int(self.ui.learningIterations.text()) bias_enabled = self.ui.biasEnabled.isChecked() learning = BackpropagationLearning(self.network, error_metric, learning_factor, momentum, bias_enabled) learning.learn(DataNormalizer.normalize(self.input_view.get_data()), learning_iterations) self.accept() @pyqtSlot() def on_randomizeButton_clicked(self): self.input_view.randomize_data() @pyqtSlot() def on_readInputButton_clicked(self): filePath = QFileDialog().getOpenFileName(None, "Select input data file") try: with open(filePath, "r") as file: file_lines = file.readlines() rows_count = len(file_lines) self.ui.dataCount.setValue(rows_count) for (line, row) in zip(file_lines, range(rows_count)): for (value, column) in zip(line.split(), range(self.input_view.column_count())): self.input_view.set_data(row, column, float(value)) except Exception as e: print e @pyqtSlot(int) def on_dataCount_valueChanged(self, value): old_rows_count = self.input_view.row_count() self.input_view.set_rows(value) self.input_view.randomize_data(old_rows_count) def _setup_gui(self): self.ui.errorMetricSelector.addItems(ErrorUtil.registered_factors()) self.ui.errorMetricSelector.setCurrentIndex(self.ui.errorMetricSelector.findText(ErrorUtil.default_factor())) def get_model(self): return self.input_view.get_model()
class SimulationLauncherDialog(QDialog): def __init__(self, network, test_data): QDialog.__init__(self) self.ui = Ui_SimulationLauncher() self.ui.setupUi(self) self.network = network inputs_count = len(network.inputs) self.input_view = DataView(self.ui.dataView, model=test_data, header="Input", columns=inputs_count) outputs_count = len(network.layers[-1].neurons) self.output_view = DataView(self.ui.outputView, header="Output", columns=outputs_count) self.ui.testsCountSpinBox.setValue(self.input_view.row_count()) @pyqtSlot() def on_runButton_clicked(self): if not self.input_view.check_data(): QMessageBox.warning(None, "Error", "Input data is invalid") else: inputs = self.input_view.get_data() for row_index in range(len(inputs)): row = inputs[row_index] response = self.network.calculate_network_response(row) for i in range(len(response)): self.output_view.set_data(row_index, i, round(response[i], 3)) @pyqtSlot() def on_readFileButton_clicked(self): filePath = QFileDialog().getOpenFileName(None, "Select input data file") try: with open(filePath, "r") as file: file_lines = file.readlines() rows_count = len(file_lines) self.ui.testsCountSpinBox.setValue(rows_count) for (line, row) in zip(file_lines, range(rows_count)): for (value, column) in zip(line.split(), range(self.input_view.column_count())): self.input_view.set_data(row, column, float(value)) except Exception as e: print e def get_model(self): return self.input_view.get_model() @pyqtSlot() def on_generateRandomButton_clicked(self): self.input_view.randomize_data() @pyqtSlot(int) def on_testsCountSpinBox_valueChanged(self, value): self.input_view.set_rows(value) self.output_view.set_rows(value)