示例#1
0
def cli_main():  # pragma: no-cover
    pl.seed_everything(1234)

    parser = ArgumentParser()
    parser = pl.Trainer.add_argparse_args(parser)
    parser.add_argument('--dataset',
                        type=str,
                        help='stl10, cifar10',
                        default='cifar10')
    parser.add_argument('--ckpt_path', type=str, help='path to ckpt')
    parser.add_argument('--data_dir',
                        type=str,
                        help='path to ckpt',
                        default=os.getcwd())
    args = parser.parse_args()

    # load the backbone
    backbone = SimCLR.load_from_checkpoint(args.ckpt_path, strict=False)

    # init default datamodule
    if args.dataset == 'cifar10':
        dm = CIFAR10DataModule.from_argparse_args(args)
        dm.train_transforms = SimCLRTrainDataTransform(32)
        dm.val_transforms = SimCLREvalDataTransform(32)
        dm.test_transforms = SimCLREvalDataTransform(32)
        args.num_samples = dm.num_samples

    elif args.dataset == 'stl10':
        dm = STL10DataModule.from_argparse_args(args)
        dm.train_dataloader = dm.train_dataloader_labeled
        dm.val_dataloader = dm.val_dataloader_labeled
        args.num_samples = dm.num_labeled_samples

        (c, h, w) = dm.size()
        dm.train_transforms = SimCLRTrainDataTransform(h)
        dm.val_transforms = SimCLREvalDataTransform(h)

    elif args.dataset == 'imagenet2012':
        dm = ImagenetDataModule.from_argparse_args(args, image_size=196)
        (c, h, w) = dm.size()
        dm.train_transforms = SimCLRTrainDataTransform(h)
        dm.val_transforms = SimCLREvalDataTransform(h)

    # finetune
    tuner = SSLFineTuner(backbone,
                         in_features=2048 * 2 * 2,
                         num_classes=dm.num_classes,
                         hidden_dim=None)
    trainer = pl.Trainer.from_argparse_args(args, early_stop_callback=True)
    trainer.fit(tuner, dm)

    trainer.test(datamodule=dm)
示例#2
0
def cli_main():
    parser = ArgumentParser()

    # trainer args
    parser = pl.Trainer.add_argparse_args(parser)

    # model args
    parser = SimCLR.add_model_specific_args(parser)
    args = parser.parse_args()

    # init default datamodule
    if args.dataset == 'cifar10':
        dm = CIFAR10DataModule.from_argparse_args(args)
        dm.train_transforms = SimCLRTrainDataTransform(32)
        dm.val_transforms = SimCLREvalDataTransform(32)
        args.num_samples = dm.num_samples

    elif args.dataset == 'stl10':
        dm = STL10DataModule.from_argparse_args(args)
        dm.train_dataloader = dm.train_dataloader_mixed
        dm.val_dataloader = dm.val_dataloader_mixed
        args.num_samples = dm.num_unlabeled_samples

        (c, h, w) = dm.size()
        dm.train_transforms = SimCLRTrainDataTransform(h)
        dm.val_transforms = SimCLREvalDataTransform(h)

    elif args.dataset == 'imagenet2012':
        dm = ImagenetDataModule.from_argparse_args(args, image_size=196)
        (c, h, w) = dm.size()
        dm.train_transforms = SimCLRTrainDataTransform(h)
        dm.val_transforms = SimCLREvalDataTransform(h)

    model = SimCLR(**args.__dict__)

    # finetune in real-time
    def to_device(batch, device):
        (x1, x2), y = batch
        x1 = x1.to(device)
        y = y.to(device)
        return x1, y

    online_eval = SSLOnlineEvaluator(z_dim=2048 * 2 * 2,
                                     num_classes=dm.num_classes)
    online_eval.to_device = to_device

    trainer = pl.Trainer.from_argparse_args(args, callbacks=[online_eval])
    trainer.fit(model, dm)
def test_simclr_transforms(tmpdir, img_size):
    pl.seed_everything(0)

    (c, h, w) = img_size
    x = torch.rand(c, h, w)
    x = transforms.ToPILImage(mode='RGB')(x)

    transform = SimCLREvalDataTransform(input_height=h)
    transform(x)

    transform = SimCLRTrainDataTransform(input_height=h)
    transform(x)
示例#4
0
def test_simclr(tmpdir):
    reset_seed()

    datamodule = CIFAR10DataModule(tmpdir, num_workers=0)
    datamodule.train_transforms = SimCLRTrainDataTransform(32)
    datamodule.val_transforms = SimCLREvalDataTransform(32)

    model = SimCLR(data_dir=tmpdir, batch_size=2, datamodule=datamodule, online_ft=True)
    trainer = pl.Trainer(overfit_batches=2, max_epochs=1, default_root_dir=tmpdir)
    trainer.fit(model)
    loss = trainer.callback_metrics['loss']

    assert loss > 0
def test_simclr(tmpdir):
    seed_everything()

    datamodule = CIFAR10DataModule(tmpdir, num_workers=0, batch_size=2)
    datamodule.train_transforms = SimCLRTrainDataTransform(32)
    datamodule.val_transforms = SimCLREvalDataTransform(32)

    model = SimCLR(batch_size=2, num_samples=datamodule.num_samples)
    trainer = pl.Trainer(fast_dev_run=True,
                         max_epochs=1,
                         default_root_dir=tmpdir)
    trainer.fit(model, datamodule)
    loss = trainer.progress_bar_dict['loss']

    assert float(loss) > 0
    from argparse import ArgumentParser

    parser = ArgumentParser()

    # trainer args
    parser = pl.Trainer.add_argparse_args(parser)

    # model args
    parser = SimCLR.add_model_specific_args(parser)
    args = parser.parse_args()

    # init default datamodule
    if args.dataset == 'cifar10':
        dm = CIFAR10DataModule.from_argparse_args(args)
        dm.train_transforms = SimCLRTrainDataTransform(32)
        dm.val_transforms = SimCLREvalDataTransform(32)
        args.num_samples = dm.num_samples

    elif args.dataset == 'stl10':
        dm = STL10DataModule.from_argparse_args(args)
        dm.train_dataloader = dm.train_dataloader_mixed
        dm.val_dataloader = dm.val_dataloader_mixed
        args.num_samples = dm.num_unlabeled_samples

        (c, h, w) = dm.size()
        dm.train_transforms = SimCLRTrainDataTransform(h)
        dm.val_transforms = SimCLREvalDataTransform(h)

    elif args.dataset == 'imagenet2012':
        dm = ImagenetDataModule.from_argparse_args(args, image_size=196)
        (c, h, w) = dm.size()
    def __init__(self,
                 datamodule: pl_bolts.datamodules.LightningDataModule = None,
                 data_dir: str = '',
                 learning_rate: float = 0.00006,
                 weight_decay: float = 0.0005,
                 input_height: int = 32,
                 batch_size: int = 128,
                 online_ft: bool = False,
                 num_workers: int = 4,
                 optimizer: str = 'lars',
                 lr_sched_step: float = 30.0,
                 lr_sched_gamma: float = 0.5,
                 lars_momentum: float = 0.9,
                 lars_eta: float = 0.001,
                 loss_temperature: float = 0.5,
                 **kwargs):
        """
        PyTorch Lightning implementation of `SIMCLR <https://arxiv.org/abs/2002.05709.>`_

        Paper authors: Ting Chen, Simon Kornblith, Mohammad Norouzi, Geoffrey Hinton.

        Model implemented by:

            - `William Falcon <https://github.com/williamFalcon>`_
            - `Tullie Murrell <https://github.com/tullie>`_

        Example:

            >>> from pl_bolts.models.self_supervised import SimCLR
            ...
            >>> model = SimCLR()

        Train::

            trainer = Trainer()
            trainer.fit(model)

        CLI command::

            # cifar10
            python simclr_module.py --gpus 1

            # imagenet
            python simclr_module.py
                --gpus 8
                --dataset imagenet2012
                --data_dir /path/to/imagenet/
                --meta_dir /path/to/folder/with/meta.bin/
                --batch_size 32

        Args:
            datamodule: The datamodule
            data_dir: directory to store data
            learning_rate: the learning rate
            weight_decay: optimizer weight decay
            input_height: image input height
            batch_size: the batch size
            online_ft: whether to tune online or not
            num_workers: number of workers
            optimizer: optimizer name
            lr_sched_step: step for learning rate scheduler
            lr_sched_gamma: gamma for learning rate scheduler
            lars_momentum: the mom param for lars optimizer
            lars_eta: for lars optimizer
            loss_temperature: float = 0.
        """
        super().__init__()
        self.save_hyperparameters()
        self.online_evaluator = online_ft

        # init default datamodule
        if datamodule is None:
            datamodule = CIFAR10DataModule(data_dir, num_workers=num_workers)
            datamodule.train_transforms = SimCLRTrainDataTransform(
                input_height)
            datamodule.val_transforms = SimCLREvalDataTransform(input_height)

        self.datamodule = datamodule
        self.loss_func = self.init_loss()
        self.encoder = self.init_encoder()
        self.projection = self.init_projection()

        if self.online_evaluator:
            z_dim = self.projection.output_dim
            num_classes = self.datamodule.num_classes
            self.non_linear_evaluator = SSLEvaluator(n_input=z_dim,
                                                     n_classes=num_classes,
                                                     p=0.2,
                                                     n_hidden=1024)
    # trainer args
    parser = pl.Trainer.add_argparse_args(parser)

    # model args
    parser = SimCLR.add_model_specific_args(parser)
    args = parser.parse_args()

    # pick data
    datamodule = None
    if args.dataset == 'stl10':
        datamodule = STL10DataModule.from_argparse_args(args)
        datamodule.train_dataloader = datamodule.train_dataloader_mixed
        datamodule.val_dataloader = datamodule.val_dataloader_mixed

        (c, h, w) = datamodule.size()
        datamodule.train_transforms = SimCLRTrainDataTransform(h)
        datamodule.val_transforms = SimCLREvalDataTransform(h)

    elif args.dataset == 'imagenet2012':
        datamodule = ImagenetDataModule.from_argparse_args(args,
                                                           image_size=196)
        (c, h, w) = datamodule.size()
        datamodule.train_transforms = SimCLRTrainDataTransform(h)
        datamodule.val_transforms = SimCLREvalDataTransform(h)

    model = SimCLR(**args.__dict__, datamodule=datamodule)

    trainer = pl.Trainer.from_argparse_args(args)
    trainer.fit(model)
    def __init__(self,
                 datamodule: pl.LightningDataModule = None,
                 data_dir: str = './',
                 learning_rate: float = 0.2,
                 weight_decay: float = 15e-6,
                 input_height: int = 32,
                 batch_size: int = 32,
                 num_workers: int = 4,
                 warmup_epochs: int = 10,
                 max_epochs: int = 1000,
                 **kwargs):
        """
        PyTorch Lightning implementation of `Bring Your Own Latent (BYOL)
        <https://arxiv.org/pdf/2006.07733.pdf.>`_

        Paper authors: Jean-Bastien Grill ,Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, \
        Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, \
        Bilal Piot, Koray Kavukcuoglu, Rémi Munos, Michal Valko.

        Model implemented by:
            - `Annika Brundyn <https://github.com/annikabrundyn>`_

        .. warning:: Work in progress. This implementation is still being verified.

        TODOs:
            - verify on CIFAR-10
            - verify on STL-10
            - pre-train on imagenet

        Example:

            >>> from pl_bolts.models.self_supervised import BYOL
            ...
            >>> model = BYOL()

        Train::

            trainer = Trainer()
            trainer.fit(model)

        CLI command::

            # cifar10
            python byol_module.py --gpus 1

            # imagenet
            python byol_module.py
                --gpus 8
                --dataset imagenet2012
                --data_dir /path/to/imagenet/
                --meta_dir /path/to/folder/with/meta.bin/
                --batch_size 32

        Args:
            datamodule: The datamodule
            data_dir: directory to store data
            learning_rate: the learning rate
            weight_decay: optimizer weight decay
            input_height: image input height
            batch_size: the batch size
            num_workers: number of workers
            warmup_epochs: num of epochs for scheduler warm up
            max_epochs: max epochs for scheduler
        """
        super().__init__()
        self.save_hyperparameters()

        # init default datamodule
        if datamodule is None:
            datamodule = CIFAR10DataModule(data_dir,
                                           num_workers=num_workers,
                                           batch_size=batch_size)
            datamodule.train_transforms = SimCLRTrainDataTransform(
                input_height)
            datamodule.val_transforms = SimCLREvalDataTransform(input_height)

        self.datamodule = datamodule

        self.online_network = SiameseArm()
        self.target_network = deepcopy(self.online_network)

        self.weight_callback = BYOLMAWeightUpdate()

        # for finetuning callback
        self.z_dim = 2048
        self.num_classes = self.datamodule.num_classes