def do_setup(self): # initialize data structures after learning the game settings self.strat_influence = Influence(self.gamestate) self.planner = Planner(self.gamestate)
class MyBot: def __init__(self, gamestate): # define class level variables, will be remembered between turns self.gamestate = gamestate self.diffuse_time = 0 self.combat_time_history = deque([0, 0, 0, 0, 0]) self.combat_time = 0 # do_setup is run once at the start of the game # after the bot has received the game settings def do_setup(self): # initialize data structures after learning the game settings self.strat_influence = Influence(self.gamestate) self.planner = Planner(self.gamestate) def log_turn(self, turn_no): logging.debug('turn ' + str(self.gamestate.current_turn)) logging.debug('self.diffuse_time = %d' % self.diffuse_time) logging.debug('self.combat_time_history = %s' % str(self.combat_time_history)) logging.debug('self.combat_time = %s' % self.combat_time) # logging.debug('self.strat_influence.map over 0.01 count: %d' % # len([key for key in self.strat_influence.map if math.fabs(self.strat_influence.map[key]) > 0.01])) def log_detail(self): if DETAIL_LOG and os.path.isdir('pickle'):# and int(self.gamestate.current_turn) % 10 == 0: # dump gamestate pickle_file = open('pickle/turn_' + str(self.gamestate.current_turn) + '.gamestate', 'wb') pickle.dump(self.gamestate, pickle_file) pickle_file.close() # dump influence map value pickle_file = open('pickle/turn_' + str(self.gamestate.current_turn) + '.influence', 'wb') pickle.dump(self.strat_influence, pickle_file) pickle_file.close() # do turn is run once per turn def do_turn(self): # detailed logging self.log_turn(self.gamestate.current_turn) # decay strategy influence #logging.debug('strat_influence.decay().start = %s' % str(self.gamestate.time_remaining())) self.strat_influence.decay(DECAY_RATE) #self.strat_influence = Influence(self.gamestate) #logging.debug('strat_influence.decay().finish = %s' % str(self.gamestate.time_remaining())) # use planner to set new influence logging.debug('self.planner.do_strategy_plan.start = %s' % str(self.gamestate.time_remaining())) self.planner.do_strategy_plan(self.strat_influence) # for row in range(self.strat_influence.map.shape[0]): # for col in range(self.strat_influence.map.shape[1]): # if math.fabs(self.strat_influence.map[row,col]): # logging.debug('%d, %d = %f' % (row, col, self.strat_influence.map[row,col])) # diffuse strategy influence logging.debug('strat_influence.diffuse().start = %s' % str(self.gamestate.time_remaining())) for i in xrange(10): if self.gamestate.time_remaining() < self.combat_time + 100: logging.debug('bailing diffuse after %d times' % (i)) break diffuse_start = self.gamestate.time_remaining() self.strat_influence.diffuse() diffuse_duration = diffuse_start - self.gamestate.time_remaining() self.diffuse_time = max([diffuse_duration, self.diffuse_time]) self.diffuse_time -= 1 logging.debug('strat_influence.diffuse().finish = %s' % str(self.gamestate.time_remaining())) # razing nearby hill takes precedence self.raze_override() # handle combat combat_start = self.gamestate.time_remaining() self.issue_combat_task() self.combat_time_history.append(combat_start - self.gamestate.time_remaining()) self.combat_time_history.popleft() self.combat_time = max(self.combat_time_history) self.log_detail() # handle explorer self.issue_explore_task() logging.debug('endturn: my_ants count = %d, time_elapsed = %s' % (len(self.gamestate.my_ants()), self.gamestate.time_elapsed())) def raze_override(self): 'razing close-by hill takes precedence over combat' for hill_loc, owner in self.gamestate.enemy_hills(): for n_loc in self.gamestate.neighbour_table[hill_loc]: if n_loc in self.gamestate.my_ants(): direction = self.gamestate.direction(n_loc, hill_loc) + [None] self.gamestate.issue_order((n_loc, direction[0])) def issue_combat_task(self): 'combat logic' logging.debug('issue_combat_task.start = %s' % str(self.gamestate.time_remaining())) zones = battle.get_combat_zones(self.gamestate) logging.debug('get_combat_zones.finish = %s' % str(self.gamestate.time_remaining())) if zones is not None: logging.debug('zones.count = %d' % len(zones)) for zone in zones: if len(zone[0]) > 0: logging.debug('group combat loop for = %s' % str(zone)) logging.debug('do_zone_combat.start = %s' % str(self.gamestate.time_remaining())) battle.do_zone_combat(self.gamestate, zone) logging.debug('do_zone_combat.start = %s' % str(self.gamestate.time_remaining())) # check if we still have time left to calculate more orders if self.gamestate.time_remaining() < 50: break logging.debug('issue_combat_task.finish = ' + str(self.gamestate.time_remaining())) def normal_explore(self, my_ant): 'only concern influence' loc_influences = {} for d in self.gamestate.passable_directions(my_ant): loc_influences[d] = self.strat_influence.map[self.gamestate.destination(my_ant, d)] #logging.debug('my_ant = %s, loc_influences = %s' % (str(my_ant),str(loc_influences))) if len(loc_influences) > 0: best_directions = min(loc_influences, key=loc_influences.get) logging.debug('moving %s to %s' % (str(my_ant), str(best_directions))) self.gamestate.issue_order((my_ant, best_directions)) def avoidance_explore(self, my_ant, enemy_ants): 'explore under enemies presence' safe_distance = self.gamestate.euclidean_distance_add(self.gamestate.attackradius2, 1) nav_info = [] for loc in self.gamestate.neighbour_table[my_ant] + [my_ant]: influence = self.strat_influence.map[loc] distance = min([self.gamestate.euclidean_distance2(loc, enemy_ant) for enemy_ant in enemy_ants]) nav_info.append((influence, distance, loc)) # go for lowest influence that's safe nav_info.sort() best_loc = None for info in nav_info: (influence, distance, loc) = info if distance > safe_distance: best_loc = loc break # if no safe move try largest distance if best_loc is None: (influence, distance, loc) = sorted(nav_info, key=lambda x: x[1])[0] best_loc = loc # do the move directions = self.gamestate.direction(my_ant, best_loc) + [None] self.gamestate.issue_order((my_ant, directions[0])) def issue_explore_task(self): 'explore map based on influence' logging.debug('issue_explore_task.start = %s' % str(self.gamestate.time_remaining())) # loop through all my un-moved ants and set them to explore # the ant_loc is an ant location tuple in (row, col) form avoidance_distance = self.gamestate.euclidean_distance_add(self.gamestate.attackradius2, 2) for my_ant in self.gamestate.my_unmoved_ants(): enemy_ants = [enemy_ant for enemy_ant, owner in self.gamestate.enemy_ants() if self.gamestate.euclidean_distance2(my_ant, enemy_ant) <= avoidance_distance] if len(enemy_ants) > 0: self.avoidance_explore(my_ant, enemy_ants) else: self.normal_explore(my_ant) # check if we still have time left to calculate more orders if self.gamestate.time_remaining() < 10: break logging.debug('issue_explore_task.finish = ' + str(self.gamestate.time_remaining())) # static methods are not tied to a class and don't have self passed in # this is a python decorator @staticmethod def run(): 'parse input, update game state and call the bot classes do_turn method' gamestate = GameState() bot = MyBot(gamestate) map_data = '' while(True): try: current_line = sys.stdin.readline().rstrip('\r\n') # string new line char if current_line.lower() == 'ready': gamestate.setup(map_data) bot.do_setup() gamestate.finish_turn() map_data = '' elif current_line.lower() == 'go': gamestate.update(map_data) # call the do_turn method of the class passed in bot.do_turn() gamestate.finish_turn() map_data = '' else: map_data += current_line + '\n' except EOFError: break except KeyboardInterrupt: raise except: # don't raise error or return so that bot attempts to stay alive traceback.print_exc(file=sys.stderr) sys.stderr.flush()