示例#1
0
    def plotMultiPanelKOSContourAndOscillationDistance(self,
                                                       manual_labels=False):
        fig, axs = plt.subplots(1, 2)
        U, LD = self.post_processor.param_study.meshGrid()
        Z = 1e-6 * self.reshapeListToArray(
            [pp.KOS for pp in self.post_processor.post_processors])
        levels = contourLevels(Z, 0.5, 0.5)
        cplot = axs[0].contour(LD, 1e3 * U, Z, levels, cmap=self.cmap)
        # cplot = axs[0].contour(LD, 1e3*U, Z, levels, colors='k')
        if manual_labels:
            plt.clabel(cplot,
                       inline=True,
                       inline_spacing=24,
                       fontsize=10,
                       fmt='%g',
                       manual=True)
        else:
            plt.clabel(cplot, inline=1, fontsize=12, fmt='%g')
        self.setAxisLabels(ax=axs[0])
        annotate_axis_corner(axs[0], 'A')

        oscillLengths = 1e6 * np.asarray([
            pp.integralOscillationPenetrationDistance()
            for pp in self.post_processor.post_processors
        ])
        KOS = 1e-6 * np.asarray(
            [pp.KOS for pp in self.post_processor.post_processors])
        axs[1].plot(oscillLengths, KOS, '.', color='b', markersize=3)

        slope, intercept, rvalue, pvalue, stderr = \
            self.post_processor.KOSFitter.fitKOS(oscillLengths, KOS)
        rfit = np.linspace(np.min(oscillLengths), np.max(oscillLengths), 100)
        axs[1].xaxis.set_major_locator(MultipleWithMaxNLocator(0.5, 10))
        axs[1].plot(rfit, slope * rfit + intercept, 'k-')
        labels.setXLabel(r'\Delta r_{\mathrm{osc}}', 'um', ax=axs[1])
        labels.setYLabel(r'K_{OS}', 'IVR', ax=axs[1])
        set_rounded_axis_limits(axs[1], base=0.5, axis='x')
        set_rounded_axis_limits(axs[1], base=1.0, axis='y')
        annotate_axis_corner(axs[1], 'B')
        self.fig_options.saveFig('plotKOSContourAndOscillationDistance')
        plt.clf()
示例#2
0
    def plot_histogram_tissue_radii_multipanel(self, functional_colors,
                                               functional_labels, **kwargs):
        f, axarr = plt.subplots(len(self.results_list) + 2, sharex=True)
        panel_annotation = 'ABCD'
        style_scheme = styles.StyleSchemeCOSH()
        x_range = (0, 40)
        bin_width = 2
        bar_fraction = 0.7
        bar_width = bin_width * bar_fraction
        bins = np.array(
            np.linspace(x_range[0], x_range[1],
                        (x_range[1] - x_range[0]) / bin_width + 1))
        bin_center = 0.5 * (bins[:-1] + bins[1:])
        y_max = 0.0
        hist_axes = axarr[0:-1]

        # boxplot
        data = [
            1e6 * np.array(self.results_list[0].topological_tissue_radii()),
            1e6 * np.array(self.results_list[1].functional_tissue_radii()),
            1e6 * np.array(self.results_list[0].functional_tissue_radii())
        ]
        labels = 'CBA'
        medianprops = {'color': 'w'}
        flierprops = {'marker': '.', 'markersize': 2}
        bp = axarr[-1].boxplot(data,
                               whis=[5, 95],
                               vert=False,
                               labels=labels,
                               patch_artist=True,
                               medianprops=medianprops,
                               showfliers=False,
                               flierprops=flierprops)
        fill_colors = [
            style_scheme['int_topol_radii_face_color'], functional_colors[1],
            functional_colors[0]
        ]
        for patch, color in zip(bp['boxes'], fill_colors):
            patch.set_facecolor(color)

        # histograms
        for i, (results, ax) in enumerate(zip(self.results_list, hist_axes)):
            func_radii = 1e6 * np.array(results.functional_tissue_radii())
            functional_count, _ = np.histogram(func_radii, bins=bins)
            y_max = max(y_max, np.max(functional_count))
            x_func = bin_center
            ax.bar(x_func,
                   functional_count,
                   bar_width,
                   edgecolor='k',
                   facecolor=functional_colors[i],
                   linewidth=0.4,
                   label=functional_labels[i])

        x_topol = bin_center
        topol_radii = 1e6 * np.array(
            self.results_list[0].topological_tissue_radii())
        topological_count, _ = np.histogram(topol_radii, bins=bins)
        axarr[-2].bar(x_topol,
                      topological_count,
                      bar_width,
                      edgecolor=style_scheme['int_topol_radii_edge_color'],
                      facecolor=style_scheme['int_topol_radii_face_color'],
                      linewidth=0.4,
                      label='geometric')
        y_max = max(y_max, np.max(topological_count))

        # plot mean and standard deviation
        y_error_bar = 1.04 * y_max
        for i, (results, ax) in enumerate(zip(self.results_list, hist_axes)):
            func_radii = 1e6 * np.array(results.functional_tissue_radii())
            ax.errorbar(np.mean(func_radii),
                        y_error_bar,
                        xerr=np.std(func_radii),
                        fmt='o',
                        markersize=2,
                        linewidth=1,
                        elinewidth=0.5,
                        capsize=2,
                        capthick=0.5,
                        color=functional_colors[i])

        axarr[-2].errorbar(np.mean(topol_radii),
                           y_error_bar,
                           xerr=np.std(topol_radii),
                           fmt='o',
                           markersize=2,
                           linewidth=1,
                           elinewidth=0.5,
                           capsize=2,
                           capthick=0.5,
                           color=style_scheme['int_topol_radii_edge_color'])

        axarr[0].set_xlim(x_range[0] - 1, x_range[1] + 1)
        y_lim_max = 1.1 * y_max
        setXLabel('\mathrm{tissue\;radius}\;r_t', 'um')
        for ax in hist_axes:
            majorLocator = MultipleLocator(10)
            ax.yaxis.set_major_locator(majorLocator)
            ax.set_ylim((0, y_lim_max))
            styles.create_COSH_legend(ax,
                                      loc='upper left',
                                      bbox_to_anchor=(0.01, 0.92))
            setYLabel('\mathrm{frequency}', '', ax=ax)
        for ax, annotation in zip(axarr, panel_annotation):
            annotate_axis_corner(ax, annotation, xy=(0.94, 0.82))
示例#3
0
    def plot_compared_hb_distal_distribution_multipanel(self, bin_width=0.02,
                                                        panel_annotation=('A', 'B', 'C')):
        """
        Plot a comparison between the simulated and the integrated hemoglobin distribution.

        Args:
            bin_width (float): bin width for histogram
            panel_annotation (sequence): panel annotations
        """
        f, axarr = plt.subplots(4, sharex=True)
        hist_axes = axarr[0:3]
        bp_ax = axarr[-1]
        sim_hb = self.postprocessor.distal_hb()
        # compute integrated distal hemoglobin distributions
        self.postprocessor.integrator.use_topological_radii = True
        self.postprocessor.integrator.compute()
        int_topol_hb, topol_weights = self.postprocessor.integrator.distal_hb_distribution()
        int_topol_hb_repeat = self.postprocessor.integrator.distal_hb_distribution_with_repeat()
        int_topol_mean = self.postprocessor.integrator.average_distal_hb()
        int_topol_std = self.postprocessor.integrator.std_distal_hb()
        self.postprocessor.integrator.use_topological_radii = False
        self.postprocessor.integrator.compute()
        int_func_hb, func_weights = self.postprocessor.integrator.distal_hb_distribution()
        int_func_hb_repeat = self.postprocessor.integrator.distal_hb_distribution_with_repeat()
        int_func_mean = self.postprocessor.integrator.average_distal_hb()
        int_func_std = self.postprocessor.integrator.std_distal_hb()

        # plot histograms
        bounds = rounded_bounds(np.hstack((sim_hb, int_topol_hb, int_func_hb)), bin_width)
        bins = np.arange(bounds[0], bounds[1]+0.5*bin_width, bin_width)
        simul_count, _ = np.histogram(sim_hb, bins=bins, normed=True)
        int_topol_count, _ = np.histogram(int_topol_hb, weights=topol_weights,
                                          bins=bins, normed=True)
        int_func_count, _ = np.histogram(int_func_hb, weights=func_weights,
                                         bins=bins, normed=True)
        bar_fraction = 0.8
        bar_width = bin_width*bar_fraction
        x = 0.5*(bins[:-1] + bins[1:])
        hist_axes[0].bar(x, simul_count, bar_width,
                         edgecolor=style_scheme['simul_radii_edge_color'],
                         facecolor=style_scheme['simul_radii_face_color'],
                         linewidth=0.3,
                         label='moving RBCs')
        hist_axes[1].bar(x, int_func_count, bar_width,
                         edgecolor=style_scheme['int_func_radii_edge_color'],
                         facecolor=style_scheme['int_func_radii_face_color'],
                         linewidth=0.3,
                         label='ODE (functional)')
        hist_axes[2].bar(x, int_topol_count, bar_width,
                         edgecolor=style_scheme['int_topol_radii_edge_color'],
                         facecolor=style_scheme['int_topol_radii_face_color'],
                         linewidth=0.3,
                         label='ODE (geometric)')
        xlim = max(0.0, round_to_base(axarr[0].get_xlim()[0], 0.1, func=np.floor)), \
               axarr[0].get_xlim()[1]
        axarr[0].set_xlim(xlim)

        # plot mean and standard deviation
        y_max = np.max(np.hstack((simul_count, int_topol_count, int_func_count)))
        sim_mean = np.mean(self.postprocessor.distal_hb())
        sim_std = np.std(self.postprocessor.distal_hb())
        y_error_bar = 1.05*y_max
        hist_axes[0].errorbar(sim_mean, y_error_bar, xerr=sim_std,
                              fmt='o', markersize=2, linewidth=1,
                              elinewidth=0.5,
                              capsize=2, capthick=0.5,
                              color=style_scheme['simul_radii_face_color'])
        hist_axes[1].errorbar(int_func_mean, y_error_bar, xerr=int_func_std,
                              fmt='o', markersize=2, linewidth=1,
                              elinewidth=0.5,
                              capsize=2, capthick=0.5,
                              color=style_scheme['int_func_radii_face_color'])
        hist_axes[2].errorbar(int_topol_mean, y_error_bar, xerr=int_topol_std,
                              fmt='o', markersize=2, linewidth=1,
                              elinewidth=0.5,
                              capsize=2, capthick=0.5,
                              color=style_scheme['int_topol_radii_edge_color'])
        setXLabel('\mathrm{outflow\;saturation}\;S_v', '')
        axarr[0].xaxis.set_major_locator(MultipleLocator(0.1))
        for ax, annotation in zip(hist_axes, panel_annotation):
            styles.create_COSH_legend(ax, loc='upper left')
            ax.yaxis.set_major_locator(MultipleLocator(5))
            # ax.yaxis.set_major_locator(MultipleLocator(10))
            setYLabel('f_{S_v}', '', ax=ax)
        for ax, annotation in zip(axarr, panel_annotation):
            annotate_axis_corner(ax, annotation, xy=(0.956, 0.79))
            # if annotation != 'C':
            #     annotate_axis_corner(ax, annotation, xy=(0.956, 0.79))
            # else:
            #     annotate_axis_corner(ax, annotation, xy=(0.956, 0.72))

        # boxplot
        data = [int_topol_hb_repeat, int_func_hb_repeat, sim_hb]
        offset = len(panel_annotation) - len(data)
        labels = panel_annotation[-1-offset::-1]
        medianprops = {'color': 'w'}
        flierprops = {'marker': '.', 'markersize': 2}
        bp = bp_ax.boxplot(data, whis=[5, 95], vert=False, labels=labels,
                           patch_artist=True, medianprops=medianprops, flierprops=flierprops,
                           showfliers=False)
        fill_colors = [style_scheme['int_topol_radii_edge_color'],
                       style_scheme['int_func_radii_face_color'],
                       style_scheme['simul_radii_face_color']]
        for patch, color in zip(bp['boxes'], fill_colors):
            patch.set_facecolor(color)
        print "5th percentile of topological:  ", np.percentile(int_topol_hb_repeat, 5)
        print "First quartile of topological:  ", np.percentile(int_topol_hb_repeat, 25)
        print "Median of topological:          ", np.percentile(int_topol_hb_repeat, 50)
        print "Third quartile of topological:  ", np.percentile(int_topol_hb_repeat, 75)
        print "95th percentile of topological: ", np.percentile(int_topol_hb_repeat, 95)

        # statistical testing
        F = int_topol_std**2/sim_std**2
        pvalue = scipy.stats.f.sf(F, np.size(int_topol_hb) - 1, np.size(sim_hb) - 1)
        print "p-value for ODE model (topological radii) vs. moving RBC: {:g}".format(pvalue)
        F = int_func_std**2/sim_std**2
        pvalue = scipy.stats.f.sf(F, np.size(int_func_hb) - 1, np.size(sim_hb) - 1)
        print "p-value for ODE model (functional radii) vs. moving RBC: {:g}".format(pvalue)
        F = int_topol_std**2/int_func_std**2
        pvalue = scipy.stats.f.sf(F, np.size(int_topol_hb) - 1, np.size(int_func_hb) - 1)
        print "p-value for ODE model, topological vs. functional radii: {:g}".format(pvalue)
if model_only:
    for model_name in postprocessor.integrators:
        plotter = DiffusiveInteractionModelPlotter(
            postprocessor.integrators[model_name])
        plotter.plotAll()
        figOptions.saveFig('plot_{:s}_modelDiffusiveInteraction_Hb{:s}'.\
                           format(model_name, plot_name_suffix))
        plt.clf()
else:
    plotter = DiffusiveInteractionComparisonPlotter(postprocessor, model_names)
    if args.multipanel:
        panel_layout = (2, 1) if not args.panelLayout else args.panelLayout
        fig, axs = plt.subplots(*panel_layout, sharex=True)
        plt.sca(axs[0])
        plotter.plotHbProfiles(plot_mean=plot_mean)
        annotate_axis_corner(axs[0], 'A')
        if panel_layout[1] == 1:
            axs[0].set_xlabel('')
        plt.sca(axs[1])
        plotter.plotHbDiffProfiles(exponential_fit=exponential_fit,
                                   linearized_ode=linearized_ode)
        # legend = create_COSH_legend(axs[1], bbox_to_anchor=(1, 0.86))
        legend = create_COSH_legend(axs[1], bbox_to_anchor=(0.5, 0.86))
        annotate_axis_corner(axs[1], 'B')
        figOptions.saveFig('plotDiffusiveInteractionMultipanel' +
                           plot_name_suffix)
    else:
        plotter.plotHbProfiles()
        plotter.plotHbDiffProfiles(exponential_fit=exponential_fit)
        figOptions.saveFig('plotDiffusiveInteraction' + plot_name_suffix)
        plt.clf()
                    nargs='+',
                    help='Models for which to plot results',
                    default=['krogh', 'simple'])
fig_options = FigureOptions(parser)
args = parser.parse_args()
file_name = args.paramFile
method_name = args.methodName
model_names = args.modelNames
fig_options.parseOptions(args)

fig, axs = plt.subplots(2, 2, sharey=True)
flattened_axs = [ax for sublist in axs for ax in sublist]

for study, ax, text in zip(studies, flattened_axs, annotations):
    path_to_study = os.path.join(path_to_parameter_studies, study)
    path_to_study_param_file = os.path.join(path_to_study, file_name)
    param_study = ParameterStudyFactory().makeParameterStudy(
        path_to_study_param_file)
    settings_dict = load_settings_file(path_to_study)
    postprocessor = ParameterStudyPostProcessor(param_study, settings_dict)
    plotter = DiffusiveInteractionParameterStudyPlotter(
        postprocessor, fig_options, model_names)
    plt.sca(ax)
    getattr(plotter, method_name)()
    annotate_axis_corner(ax, text)

axs[0, 1].set_ylabel('')
axs[1, 1].set_ylabel('')

fig_options.saveFig('plotDiffusiveInteractionMulti_{:s}'.format(method_name))
if args.allSegments:
    sids = plotter.edge_ids()
else:
    sids = args.segmentIndices

if multipanel:
    nrow = len(sids) / ncol
    fig, axs = plt.subplots(nrow, ncol)
    flattened_axs = [ax for sublist in axs for ax in sublist]
    for si, ax, annotation in zip(sids, flattened_axs, annotations):
        plt.sca(ax)
        plotter.plot_hb_profiles(si)
        plotter.plot_hb_mean_pm_std(si)
        plotter.restrict_x_limits_to_defined_values(si)
        annotate_axis_corner(ax, annotation)
    e_string = '_'.join(['{:d}'.format(si) for si in sids])
    plotname = 'plotHbSimulatedEdges_e_{:s}'.format(e_string)
    figOptions.saveFig(plotname)
else:
    for si in sids:
        plt.clf()
        plotter.plot_hb_profiles(si)
        plotter.plot_hb_mean_pm_std(si)
        if integrated_profiles:
            plotter.plot_hb_profile_integrated(si)
        plotter.restrict_x_limits_to_defined_values(si)
        n_profiles = plotter.n_profiles(si)
        plotname = 'plotHbSimulatedEdges_e_{:d}_n_{:d}'.format(si, n_profiles)
        figOptions.saveFig(plotname)
        plt.clf()
示例#7
0
    path_to_study_file = os.path.join(path_to_parameter_studies, study,
                                      file_name)
    param_study = ParameterStudyFactory().makeParameterStudy(
        path_to_study_file)
    postprocessor = make_param_study_post_processor(param_study)
    plotter = DiffusiveInteractionParameterStudyPlotter(
        postprocessor, fig_options, model_names)
    plt.sca(ax)
    plotter.plotComparisonSaturationDifferenceDecayTime(color=color)
    ax.xaxis.label.set_color(color)
    for t1 in ax.get_xticklabels():
        t1.set_color(color)

# adapt axes limits and tick locations
ax2.set_ylim(100, 200)
ax2.yaxis.set_major_locator(MultipleLocator(20))
ax3.set_ylim(100, 200)
ax3.yaxis.set_major_locator(MultipleLocator(20))
ax2.xaxis.set_major_locator(MultipleLocator(0.2))  # RBC velocity
ax3.xaxis.set_major_locator(MultipleLocator(0.4))  # M_0

# if panel_layout[0] == 1:
#     ax3.set_ylabel('')
#     ax3.tick_params(labelleft='off')

annotate_axis_corner(ax1, 'A', xy=(0.90, 0.88))
annotate_axis_corner(ax2, 'B', xy=(0.90, 0.88))
annotate_axis_corner(ax3, 'C', xy=(0.90, 0.88))

fig_options.saveFig('plotDecayTimesDiffusiveInteractionTheoreticalAndTwinAxes')
示例#8
0
parser.add_argument('--paramFile',
                    help='Path to parameter study file', default='params.json')
parser.add_argument('--manual-labels', action='store_true',
                    help='Whether to set manually the contour labels')
parser.add_argument('--settingsFile', help='Relative path to the file with postprocessing settings',
                    default='postprocess.json')
fig_options = FigureOptions(parser)
args = parser.parse_args()
file_name = args.paramFile
manual_labels = args.manual_labels
settings_file = args.settingsFile
fig_options.parseOptions(args)

fig, axs = plt.subplots(1, 2, sharey=True)
twin_axs = []
for study, ax, text in zip(studies, axs, annotations):
    path_to_study_file = os.path.join(path_to_parameter_studies, study, file_name)
    param_study = ParameterStudyFactory().makeParameterStudy(path_to_study_file)
    postprocessor = make_param_study_post_processor(param_study)
    plotter = PlasmaOxygenationParamStudyPlotter(postprocessor, fig_options)
    plt.sca(ax)
    plotter.contour_delta_po2(manual_labels=manual_labels)
    twin_axs.append(plt.gca())  # hack to get the twin axes
    annotate_axis_corner(ax, text, xy=(0.94, 0.92))

twin_axs[0].set_ylabel('')
twin_axs[0].set_yticklabels([])
axs[1].set_ylabel('')

fig_options.saveFig('plotPlasmaOxygenation_rc_1.5um_2.0um')
示例#9
0
                    help='Maximal time difference used for the linear fit')
figOptions = FigureOptions(parser)
args = parser.parse_args()
case_name = args.caseName
eids = args.edgeIndices
n_profile_min = args.nProfileMin
time_diff_max_fit = args.timeDiffMaxFit
figOptions.parseOptions(args)

postprocessor = make_post_processor(case_name)
plotter = HemoglobinOnSegmentsPlotter(postprocessor,
                                      n_profile_min=n_profile_min)

fig, axs = plt.subplots(len(eids), 2)
flattened_axs = [ax for sublist in axs for ax in sublist]
for i, (ei, annot) in enumerate(zip(eids, annotations)):
    plt.sca(axs[i, 0])
    plotter.plot_hb_profiles(ei)
    plotter.plot_hb_mean_pm_std(ei)
    plotter.restrict_x_limits_to_defined_values(ei)
    annotate_axis_corner(axs[i, 0], annot[0])

    plt.sca(axs[i, 1])
    plotter.plot_hb_drop_vs_time_to_previous_rbc(ei,
                                                 threshold=time_diff_max_fit)
    annotate_axis_corner(axs[i, 1], annot[1])

e_string = '_'.join(['{:d}'.format(ei) for ei in eids])
figOptions.saveFig(
    'plotHbProfilesWithDropVsRBCSpacing_e_{:s}'.format(e_string))