def random_test_with_dropout_tf(): X, Y, Y_onehot = input_data.loadRandomData() layer_types = [ 'relu', 'softmax', ] hidden_layer_dims = [ 120, ] parameters = nn_model_tf.model(X, Y_onehot, hidden_layer_dims, layer_types, learning_rate=0.5, num_iterations=2001, num_batches=2, prob=0.5) Y_predict, train_accuracy = nn_model_tf.predict(X, Y_onehot, parameters, hidden_layer_dims, layer_types) train_accuracy = np.sum(Y_predict == Y) / Y.shape[1] print('Training accuracy: %f' % train_accuracy) plot.show_decision_boundry(X, Y, Y_onehot, nn_model_tf.predict, parameters, hidden_layer_dims, layer_types)
def random_test_tf(): X, Y, Y_onehot = input_data.loadRandomData() layer_types = [ 'relu', 'softmax', ] hidden_layer_dims = [ 120, ] parameters = nn_model_tf.model(X, Y_onehot, hidden_layer_dims, layer_types, learning_rate=0.5, num_iterations=1001, lambd=0) Y_predict, train_accuracy = nn_model_tf.predict(X, Y_onehot, parameters, hidden_layer_dims, layer_types) print('Training accuracy: %f' % train_accuracy) plot.show_decision_boundry(X, Y, Y_onehot, nn_model.predict, parameters, hidden_layer_dims, layer_types)