# Plotting ############ if save_figures: symmetric = 0 colorbar = False closest_square_to_kernel = int(np.sqrt(kernel_size))**2 directory = './figures/' formating = '.pdf' title = 'real_regresion_h1' save_filename = directory + title + formating plot_mutliplot_bilinear(closest_square_to_kernel, h1, colorbar=colorbar, symmetric=symmetric) figure = plt.gcf() # get current figure if remove_axis: # Remove axis for i in xrange(closest_square_to_kernel): figure.get_axes()[i].get_xaxis().set_visible(False) figure.get_axes()[i].get_yaxis().set_visible(False) figure.set_size_inches(16, 12) plt.savefig(save_filename, dpi=100) os.system("pdfcrop %s %s" % (save_filename, save_filename)) plt.show()
n1 = 7.0 n2 = 8.0 t1 = -6.0 t2 = -6.0 td = 6.0 p1 = K1 * ((c1*(t - t1))**n1 * np.exp(-c1*(t - t1))) / ((n1**n1) * np.exp(-n1)) p2 = K2 * ((c2*(t - t2))**n2 * np.exp(-c2*(t - t2))) / ((n2**n2) * np.exp(-n2)) p3 = p1 - p2 plt.plot(t, p3, label='temporal kernel') plt.xlabel('time (ms)') plt.legend() plt.show() ## Now create the spatio-temporal filter # Initialize and fill the spatio-temporal kernel kernel = np.zeros((kernel_size, int(lx/dx), int(ly/dy))) for k, p in enumerate(p3): kernel[k,...] = p * Z plot_mutliplot_bilinear(25,kernel, colorbar=True, symmetric=2) p plt.show()
############ # Plotting ############ if save_figures: symmetric = 0 colorbar = False closest_square_to_kernel = int(np.sqrt(kernel_size)) ** 2 directory = './figures/' formating='.pdf' title = 'real_regresion_h1' save_filename = directory + title + formating plot_mutliplot_bilinear(closest_square_to_kernel, h1, colorbar=colorbar, symmetric=symmetric) figure = plt.gcf() # get current figure if remove_axis: # Remove axis for i in xrange(closest_square_to_kernel): figure.get_axes()[i].get_xaxis().set_visible(False) figure.get_axes()[i].get_yaxis().set_visible(False) figure.set_size_inches(16, 12) plt.savefig(save_filename, dpi = 100) os.system("pdfcrop %s %s" % (save_filename, save_filename)) plt.show()
ims, training_indexes, delay_indexes, image_indexes, kernel_to_input, input_to_image, kernel_times, verbose=verbose) ############ # Plotting and saving ############ symmetric = 1 colorbar = True closest_square_to_kernel = int(np.sqrt(kernel_size))**2 plot_mutliplot_bilinear(closest_square_to_kernel, sta) directory = './figures/' formating = '.pdf' title = 'STA' + quality + stimuli_type save_filename = directory + title + formating figure = plt.gcf() # get current figure if remove_axis: #Remove axis for i in xrange(closest_square_to_kernel): figure.get_axes()[i].get_xaxis().set_visible(False) figure.get_axes()[i].get_yaxis().set_visible(False) figure.set_size_inches(16, 12)
############ # Plotting ############ symmetric = 1 colorbar = True closest_square_to_kernel = int(np.sqrt(kernel_size))**2 # Plot dense directory = './figures/' formating = '.pdf' title = 'simulation_regresion_h1' + quality + stimuli_type_dense save_filename = directory + title + formating plot_mutliplot_bilinear(closest_square_to_kernel, h1_dense, colorbar=colorbar, symmetric=symmetric) figure = plt.gcf() # get current figure if remove_axis: #Remove axis for i in xrange(closest_square_to_kernel): figure.get_axes()[i].get_xaxis().set_visible(False) figure.get_axes()[i].get_yaxis().set_visible(False) figure.set_size_inches(16, 12) plt.savefig(save_filename, dpi=100) os.system("pdfcrop %s %s" % (save_filename, save_filename)) if show_plot: plt.show()
# Calculate STA ############ print 'file name:', quality+ stimuli_type print 'Examples used to calculate it :', training_indexes.size print 'kernel size', kernel_size verbose = True # Whether we want the delays to be display or not sta = sta_v(V, ims, training_indexes, delay_indexes, image_indexes, kernel_to_input, input_to_image, kernel_times, verbose=verbose) ############ # Plotting and saving ############ symmetric = 1 colorbar = True closest_square_to_kernel = int(np.sqrt(kernel_size)) ** 2 plot_mutliplot_bilinear(closest_square_to_kernel, sta) directory = './figures/' formating='.pdf' title = 'STA' + quality + stimuli_type save_filename = directory + title + formating figure = plt.gcf() # get current figure if remove_axis: #Remove axis for i in xrange(closest_square_to_kernel): figure.get_axes()[i].get_xaxis().set_visible(False) figure.get_axes()[i].get_yaxis().set_visible(False) figure.set_size_inches(16, 12)
#symmetric = 1 symmetric = 0 colorbar = True closest_square_to_kernel = int(np.sqrt(kernel_size)) ** 2 aux1=-0.70 aux2=0.45 # Plot dense directory = './figures/' formating='.pdf' title = 'simulation_regresion_h1' + quality + 'cell' + cell_number + '_'+ stimuli_type_dense save_filename = directory + title + formating #plot_mutliplot_bilinear(closest_square_to_kernel, h1_dense, colorbar=colorbar, symmetric=symmetric) plot_mutliplot_bilinear(closest_square_to_kernel, h1_dense, colorbar=colorbar, symmetric=symmetric, aux1=aux1, aux2=aux2) figure = plt.gcf() # get current figure if remove_axis: #Remove axis for i in xrange(closest_square_to_kernel): figure.get_axes()[i].get_xaxis().set_visible(False) figure.get_axes()[i].get_yaxis().set_visible(False) figure.set_size_inches(16, 12) plt.savefig(save_filename, dpi = 100) os.system("pdfcrop %s %s" % (save_filename, save_filename)) if show_plot: plt.show()