parser.add_argument('-bs', '--bitwise_spikefile', type=str) parser.add_argument('-os', '--original_spikefile', type=str) parser.add_argument('-bmem', '--bitwise_mem_pop_file', type=str) parser.add_argument('-fn', '--filename', type=str) args = parser.parse_args() original_spikefile = args.original_spikefile original_times, original_senders = hf.read_spikefile(original_spikefile) bitwise_spikefile = args.bitwise_spikefile bitwise_times, bitwise_senders = hf.read_spikefile(bitwise_spikefile) bitwise_mem_pop = np.loadtxt(args.bitwise_mem_pop_file) phf.latexify(columns=2) excolor = 'C0' incolor = 'C1' fig = plt.figure() gs0 = gridspec.GridSpec(2, 2) gs0.update(left=0.1, right=0.97, top=0.97, bottom=0.1, hspace=0.25) gs1 = gridspec.GridSpecFromSubplotSpec(7, 1, subplot_spec=gs0[0, :]) ax01 = plt.subplot(gs1[:5, 0]) ax02 = plt.subplot(gs1[5:, 0]) #only plot every 10th sender idxes_subsample = bitwise_senders % 4 == 0 idxes_times = bitwise_times > np.max(bitwise_times) - 5000 senders = bitwise_senders[idxes_subsample & idxes_times]
import matplotlib matplotlib.use('Agg') import numpy as np import sys import helper import json import argparse import pylab as plt import seaborn as sns import plot_helper as phf phf.latexify(columns=1) parser = argparse.ArgumentParser() parser.add_argument('-i', '--input', nargs='+', type=str) parser.add_argument('-o', '--output', type=str) args = parser.parse_args() plt.figure() for i in args.input: with open(i, 'r+') as f: data = json.load(f) if 'qualitative_model' == data['label'] or 'bitwise' in data['label'] or 'initial' in data['label']: # or 'reso' in data['label']: if 'qualitative' in data['label']: plt.plot(data['dt'], data['dw'], label=data['label'], linewidth=1.,zorder=10) else: plt.plot(data['dt'], data['dw'], label=data['label'],linewidth=3.) plt.subplots_adjust(left=0.25, right=0.99, top=0.95, bottom=0.2, hspace=0.2, wspace=0.25) plt.axhline(0, color='k', linestyle='--',zorder=0)
df_latex = df.replace(value=np.nan, to_replace='Failed').groupby([ 'Experiment' ])['Number of groups', 'Number of groups (nest)', 'exc_rate', 'inh_rate', 'spektral peak'].agg([np.median, iqr, 'min', 'max', 'count']) #.agg([np.median,iqr]) print(df_latex.to_latex()) print(df_latex) df_latex_spek = df.replace(value=np.nan, to_replace='Failed').groupby([ 'Experiment', 'spektral peak' ])['Number of groups', 'Number of groups (nest)', 'exc_rate', 'inh_rate', 'spektral peak'].agg([np.median, iqr, 'min', 'max', 'count']) #.agg([np.median,iqr]) print(df_latex_spek.to_latex()) print(df_latex_spek) phf.latexify(fig_height=6., columns=1) fig = plt.figure() N = 9 N_bot = 5 M = 4 gs0 = gridspec.GridSpec(N, M) ax_orig = plt.subplot(gs0[:N_bot, :M - 1]) ax_nest = plt.subplot(gs0[N_bot:, 0:M - 1]) ax_orig_broken = fig.add_subplot(gs0[:N_bot, M - 1]) # , sharey=ax_orig) ax_nest_broken = fig.add_subplot(gs0[N_bot:, M - 1]) # , sharey=ax_nest) orig_pal = ['C2', 'C1', 'C0', 'C5', 'C4', 'C4', 'C4', 'C4', 'C4', 'C4', 'C4'] orig_exp_order = [
pd.pivot_table(connecitivty_e_e, values='weight', columns='bin_w', index='delay', aggfunc=len)) excolor = c_low h += 1 gamma_peak.append('high') with open(grp_stat_fl, "r") as f: stats = json.load(f) reps.append(rep) N_grps.append(len(stats['N_fired'])) df = pd.DataFrame(dict(reps=reps, n_groups=N_grps, spektral_peak=gamma_peak)) phf.latexify(fig_height=2.5, columns=2) fig = plt.figure() gs0 = gridspec.GridSpec(1, 3) ax_psd = plt.subplot(gs0[0, 0]) ax_weights = plt.subplot(gs0[0, 1]) ax_groups = plt.subplot(gs0[0, 2]) print(df.columns) ax_psd.plot(exc_freqs, exc_Pxx_tab[:, df.loc[df['spektral_peak'] == 'low', 'reps']], color=c_low, linewidth=1.0) ax_psd.plot(exc_freqs,