def INS_read_plot(inpath, outpath, obs, repo_dir): if not os.path.exists(outpath): os.makedirs(outpath) fig_titles = {'All': 'All Baselines', 'Unflagged': 'Post-Flagging'} for flag in fig_titles: if flag in inpath: fig_title = fig_titles[flag] flag_slice = flag INS = np.load(inpath) INS_frac_diff = INS / INS.mean(axis=1) - 1 fig, ax, pols, xticks, xminors, yminors, xticklabels = \ plot_lib.four_panel_tf_setup(np.load('%sUseful_Information/MWA_Highband_Freq_Array.npy' % (repo_dir))) fig.suptitle('%s Mean-Subtracted Incoherent Noise Spectrum, %s' % (obs, fig_title)) for m, pol in enumerate(pols): plot_lib.image_plot(fig, ax[m / 2][m % 2], INS_frac_diff[:, 0, :, m], cmap=cm.coolwarm, title=pol, cbar_label='Fraction of Mean', xticks=xticks, xminors=xminors, yminors=yminors, xticklabels=xticklabels, zero_mask=False, mask_color='black') fig.savefig('%s%s_INS_frac_diff_%s.png' % (outpath, obs, flag_slice)) np.save('%s%s_INS_frac_diff_%s.npy' % (outpath, obs, flag_slice), INS_frac_diff) return (INS, INS_frac_diff)
for m, arr in enumerate(arr_list): INS = np.load(arr) INS_total[m] = INS.mean(axis=0) frac_diff = INS / INS_total[m] - 1 frac_diff_total[m] = frac_diff.mean(axis=0) if m == 0: INS_stack = INS FD_stack = frac_diff else: INS_stack = np.vstack((INS_stack, INS)) FD_stack = np.vstack((FD_stack, frac_diff)) INS_m = INS_total.mean(axis=0) frac_diff_m = frac_diff_total.mean(axis=0) fig_INS, ax_INS, pols, xticks, xminors, yminors, xticklabels = pl.four_panel_tf_setup(freq_array) fig_fd, ax_fd = plt.subplots(figsize=(14, 8), nrows=2, ncols=2) fig_INS_s, ax_INS_s = plt.subplots(figsize=(14, 8), nrows=2, ncols=2) fig_FD_s, ax_FD_s = plt.subplots(figsize=(14, 8), nrows=2, ncols=2) fig_m, ax_m = plt.subplots(figsize=(14, 8), nrows=2) fig_mp, ax_mp = plt.subplots(figsize=(14, 8), nrows=2) avg_title = ['Golden Set INS Averaged Across Obs', 'Golden Set Frac Diff Averaged Across Obs'] ylabels = ['Amplitude (UNCALIB)', 'Fraction'] for m in range(4): pl.image_plot(fig_INS, ax_INS[m / 2][m % 2], INS_total[:, 0, :, m], title=pols[m], ylabel='Obs', cbar_label='Amplitude (UNCALIB)', xticks=xticks, xminors=xminors, yminors=yminors, xticklabels=xticklabels, zero_mask=False) pl.image_plot(fig_fd, ax_fd[m / 2][m % 2], frac_diff_total[:, 0, :, m],
INS = np.ma.masked_array(np.load(arr)) # INS = rfiutil.narrowband_filter(INS, ch_ignore) MS = INS / INS.mean(axis=0) - 1 if sig_thresh == 4: Nbls = 8001 * np.ones(INS.shape) INS, MS, _, _, _, _ = rfiutil.match_filter(INS, MS, Nbls, freq_array, sig_thresh, shape_dict) occ_num[sig_thresh - 4] += np.count_nonzero(INS.mask) occ_den[sig_thresh - 4] += np.prod(INS.shape) if np.count_nonzero(INS.mask) > 0: occ_freq_num[sig_thresh - 4, :] += np.count_nonzero(INS.mask, axis=(0, 1, 3)) occ_freq_den[sig_thresh - 4] += INS.shape[0] * INS.shape[3] fig, ax, pols, xticks, xminors, yminors, xticklabels = pl.four_panel_tf_setup( freq_array[0, :]) for m in range(4): pl.image_plot(fig, ax[m / 2][m % 2], MS[:, 0, :, m], cmap=cm.coolwarm, title=pols[m], xlabel='Frequency (Mhz)', ylabel='Time Pair', cbar_label='Fraction of Mean', xticks=xticks, xminors=xminors, yminors=yminors, xticklabels=xticklabels, zero_mask=False, mask_color='black')
with open('/Users/mike_e_dubs/MWA/Obs_Lists/P2_Streak.txt') as f: obslist = f.read().split("\n") arr_path = '/Users/mike_e_dubs/MWA/Catalogs/Wenyang_Phase2/data_eva/arrs/arrs/' outpath = '/Users/mike_e_dubs/MWA/Test_Plots/streak_test/' freq_arr = np.load( '/Users/mike_e_dubs/python_stuff/MJW-MWA/Useful_Information/MWA_Highband_Freq_Array.npy' ) for obs in obslist: frac_diff = np.load('%s%s_Unflagged_Amp_INS_frac_diff.npym' % (arr_path, obs)) fig, ax = plt.subplots(figsize=(14, 8)) fig_im, ax_im, pols, xticks, xminors, yminors, xticklabels = plot_lib.four_panel_tf_setup( freq_arr) fig_im.suptitle('%s Streak Flagging Test' % (obs)) frac_diff = rfiu.streak_detect(frac_diff) # plot_lib.line_plot(fig, ax, [edge[:, 0, m] for m in range(edge.shape[2])], # title='%s Streak Detection' % (obs), xlabel='Time', ylabel='Gradient', # labels=['XX', 'YY', 'XY', 'YX']) for m in range(frac_diff.shape[3]): plot_lib.image_plot(fig_im, ax_im[m / 2][m % 2], frac_diff[:, 0, :, m], cmap=cm.coolwarm, xlabel='Frequency (Mhz)', ylabel='Time Pair', cbar_label='Amplitude (UNCALIB)',