示例#1
0
fig_int_edges.suptitle('Edge Teeth Intercept vs. Beamformer Temperature')
pol_titles = ['XX', 'YY', 'XY', 'YX']

# Show bad obs on scatter plots
c = 30 * ['b']
# bad_obs_ind = [23, 24, 27, 28, 29]
# for k in bad_obs_ind:
#    c[k] = 'r'

for m in range(4):
    plot_lib.scatter_plot_2d(fig_slope_main,
                             ax_slope_main[m / 2][m % 2],
                             max_loc_array,
                             fit_coeff_array[:, 0, m],
                             title=pol_titles[m],
                             xlabel='Beamformer Temperature (C)',
                             ylabel='Main Slope',
                             c=c,
                             ylim=[
                                 np.amin(fit_coeff_array[:, 0, m]),
                                 np.amax(fit_coeff_array[:, 0, m])
                             ])
    plot_lib.scatter_plot_2d(fig_int_main,
                             ax_int_main[m / 2][m % 2],
                             max_loc_array,
                             fit_coeff_array[:, 1, m],
                             title=pol_titles[m],
                             xlabel='Beamformer Temperature (C)',
                             ylabel='Main Y-Intercept',
                             c=c)
    plot_lib.scatter_plot_2d(fig_slope_centers,
                             ax_slope_centers[m / 2][m % 2],
示例#2
0
use('Agg')
import matplotlib.pyplot as plt
import glob
import plot_lib as pl

flag_title = 'All'
rms_path = '/Users/mike_e_dubs/MWA/Temperatures/Golden_Set_RMS/arrs/%s/' % (
    flag_title)
outpath = '/Users/mike_e_dubs/MWA/Temperatures/Golden_Set_RMS/figs/%s/' % (
    flag_title)
rms_list = glob.glob('%s*.npym' % (rms_path))
rms_list.sort()

rms_arr = np.zeros([2, len(rms_list)])
xticks = [1061313496, 1061315320, 1061317152, 1061318984, 1061320688]

for k, rms in enumerate(rms_list):
    rms_arr[0, k] = int(rms[len(rms_path):len(rms_path) + 10])
    rms_arr[1, k] = np.load(rms)

fig, ax = plt.subplots(figsize=(14, 8))
pl.scatter_plot_2d(fig,
                   ax,
                   rms_arr[0],
                   rms_arr[1],
                   title='Golden Set RMS, Post-Flagging',
                   xlabel='Obsid',
                   ylabel='RMS (UNCALIB)',
                   xticks=xticks)
fig.savefig('%sGolden_Set_RMS_%s.png' % (outpath, flag_title))
示例#3
0
    bins_all_widths = np.diff(bins_all)
    bins_unflagged_widths = np.diff(bins_unflagged)
    bins_all_centers = bins_all[:-1] + 0.5 * bins_all_widths
    bins_unflagged_centers = bins_unflagged[:-1] + 0.5 * bins_unflagged_widths

    max_loc_all = bins_all_centers[hist_all.argmax()]
    max_loc_unflagged = bins_unflagged_centers[hist_unflagged.argmax()]

    max_locs.append([int(obs1), max_loc_unflagged, max_loc_all])

max_locs.sort()
max_locs = np.array(max_locs)
fig, ax = plt.subplots(figsize=(14, 8), nrows=2)
fig.suptitle('Golden Set Histogram Count Max Locations')
fig_titles = ['Unflagged', 'All']
xticks = [1061313496, 1061315320, 1061317152, 1061318984]

for m in range(2):
    plot_lib.scatter_plot_2d(fig,
                             ax[m],
                             max_locs[:, 0],
                             max_locs[:, m + 1],
                             title=fig_titles[m],
                             xlabel='GPS Time',
                             ylabel='Max Location (UNCALIB)',
                             xticks=xticks)

np.save('%smax_locs.npy' % (outpath), max_locs)
fig.savefig('%smax_locs_day1.png' % (outpath))
示例#4
0
import numpy as np
import plot_lib as pl
import matplotlib.pyplot as plt
from matplotlib import cm

ant_pos_arr = np.load(
    '/Users/mike_e_dubs/python_stuff/MJW-MWA/Useful_Information/MWA_ant_pos.npy'
)

fig, ax = plt.subplots(figsize=(14, 8))
pl.scatter_plot_2d(fig,
                   ax,
                   ant_pos_arr[:, 0],
                   ant_pos_arr[:, 1],
                   title='Antennas by Color',
                   xlabel='X (m)',
                   ylabel='Y (m)',
                   c=np.arange(128).astype(float),
                   cmap=cm.plasma)

fig.savefig('/Users/mike_e_dubs/MWA/Test_Plots/MWA_Ant_by_color.png')
        plot_lib.line_plot(
            fig_line,
            ax_line[m / 2][m % 2], [
                mean[:, m], fit[:, m], fit[:, m] + fit_centers[:, m],
                fit[:, m] + fit_edges[:, m]
            ],
            title=pol_titles[m],
            xticks=xticks,
            xminors=xminors,
            xticklabels=xticklabels,
            zorder=[1, 2, 2, 2],
            labels=['Template', 'Fit', 'Center Teeth Fit', 'Edge Teeth Fit'])
        plot_lib.scatter_plot_2d(fig_scatter,
                                 ax_scatter[m / 2][m % 2],
                                 temps[:, m],
                                 mean[:, m],
                                 title=pol_titles[m],
                                 xlabel='Fit Width',
                                 ylabel='Template')

    fig_exc.savefig('%s%s_Vis_Avg_Excess.png' % (plot_dir, obslist[n]))
    fig_ratio.savefig('%s%s_Vis_Avg_Ratio.png' % (plot_dir, obslist[n]))
    fig_line.savefig('%s%s_Vis_Avg_Template.png' % (plot_dir, obslist[n]))
    fig_scatter.savefig('%s%s_Vis_Avg_Temperature.png' %
                        (plot_dir, obslist[n]))

    plt.close(fig_exc)
    plt.close(fig_ratio)
    plt.close(fig_line)
    plt.close(fig_scatter)
示例#6
0
}

color_dict = {
    'soft_grad': 'blue',
    'hard_grad': 'purple',
    'NB': 'black',
    'TV6': 'red',
    'TV7': 'orange',
    'TV8': 'yellow',
    'streaks': 'green'
}

base = '/Users/mike_e_dubs/MWA/INS/Long_Run'
fig, ax = plt.subplots(figsize=(14, 8))
for key in obs_dict:
    lst = []
    for obs in obs_dict[key]:
        obs_lst = np.load('%s/time_arrs/%s_lst_arr.npy' % (base, obs))[0]
        if obs_lst > np.pi:
            obs_lst -= 2 * np.pi
        obs_lst *= 23.9345 / (2 * np.pi)
        lst.append(obs_lst)
    pl.scatter_plot_2d(fig,
                       ax,
                       lst,
                       obs_dict[key],
                       c=color_dict[key],
                       xlabel='LST (hours)',
                       ylabel='GPS Time (s)')
fig.savefig('%s/LST_v_Obs_Scatter.png' % base)