示例#1
0
def test_calculate_average():
    # Independently test getting the average
    # of a data array based on method
    date_base = datetime.datetime(2019, 1, 1)
    date_array = np.array(
        [date_base + datetime.timedelta(days=i) for i in range(5)])
    expected_stat_file_dates = []
    for date in date_array:
        dt = date.time()
        expected_stat_file_dates.append(date.strftime('%Y%m%d_%H%M%S'))
    model_data_index = pd.MultiIndex.from_product(
        [['MODEL_TEST'], expected_stat_file_dates],
        names=['model_plot_name', 'dates'])
    model_data_array = np.array([[
        3600, 5525.75062, 5525.66493, 30615218.26089, 30615764.49722,
        30614724.90979, 5.06746
    ],
                                 [
                                     3600, 5519.11108, 5519.1014,
                                     30549413.45946, 30549220.68868,
                                     30549654.24048, 5.12344
                                 ],
                                 [
                                     3600, 5516.80228, 5516.79513,
                                     30522742.16484, 30522884.89927,
                                     30522660.30975, 5.61752
                                 ],
                                 [
                                     3600, 5516.93924, 5517.80544,
                                     30525709.03932, 30520984.50965,
                                     30530479.99675, 4.94325
                                 ],
                                 [
                                     3600, 5514.52274, 5514.68224,
                                     30495695.82208, 30494633.24046,
                                     30496805.48259, 5.20369
                                 ]])
    model_data = pd.DataFrame(
        model_data_array,
        index=model_data_index,
        columns=['TOTAL', 'FBAR', 'OBAR', 'FOBAR', 'FFBAR', 'OOBAR', 'MAE'])
    stat_values_array = np.array([[[(5525.75062 - 5525.66493),
                                    (5519.11108 - 5519.1014),
                                    (5516.80228 - 5516.79513),
                                    (5516.93924 - 5517.80544),
                                    (5514.52274 - 5514.68224)]]])
    # Test 1
    average_method = 'MEAN'
    stat = 'bias'
    model_dataframe = model_data
    model_stat_values = stat_values_array[:, 0, :]
    expected_average_array = np.array([-0.184636])
    test_average_array = plot_util.calculate_average(logger, average_method,
                                                     stat, model_dataframe,
                                                     model_stat_values)
    assert (len(test_average_array) == len(expected_average_array))
    for l in range(len(test_average_array)):
        assert (round(test_average_array[l], 6) == expected_average_array[l])
    # Test 2
    average_method = 'MEDIAN'
    stat = 'bias'
    model_dataframe = model_data
    model_stat_values = stat_values_array[:, 0, :]
    expected_average_array = np.array([0.00715])
    test_average_array = plot_util.calculate_average(logger, average_method,
                                                     stat, model_dataframe,
                                                     model_stat_values)
    assert (len(test_average_array) == len(expected_average_array))
    for l in range(len(test_average_array)):
        assert (round(test_average_array[l], 6) == expected_average_array[l])
    # Test 3
    average_method = 'AGGREGATION'
    stat = 'bias'
    model_dataframe = model_data
    model_stat_values = stat_values_array[:, 0, :]
    expected_average_array = np.array([-0.184636])
    test_average_array = plot_util.calculate_average(logger, average_method,
                                                     stat, model_dataframe,
                                                     model_stat_values)
    assert (len(test_average_array) == len(expected_average_array))
    for l in range(len(test_average_array)):
        assert (round(test_average_array[l], 6) == expected_average_array[l])
    # Test 4
    stat_values_array = np.array(
        [[[5525.75062, 5519.11108, 5516.80228, 5516.93924, 5514.52274]],
         [[5525.66493, 5519.1014, 5516.79513, 5517.80544, 5514.68224]]])
    average_method = 'MEAN'
    stat = 'fbar_obar'
    model_dataframe = model_data
    model_stat_values = stat_values_array[:, 0, :]
    expected_average_array = np.array([5518.625192, 5518.809828])
    test_average_array = plot_util.calculate_average(logger, average_method,
                                                     stat, model_dataframe,
                                                     model_stat_values)
    assert (len(test_average_array) == len(expected_average_array))
    for l in range(len(test_average_array)):
        assert (round(test_average_array[l], 6) == expected_average_array[l])
    # Test 5
    average_method = 'MEDIAN'
    stat = 'fbar_obar'
    model_dataframe = model_data
    model_stat_values = stat_values_array[:, 0, :]
    expected_average_array = np.array([5516.93924, 5517.80544])
    test_average_array = plot_util.calculate_average(logger, average_method,
                                                     stat, model_dataframe,
                                                     model_stat_values)
    assert (len(test_average_array) == len(expected_average_array))
    for l in range(len(test_average_array)):
        assert (round(test_average_array[l], 6) == expected_average_array[l])
示例#2
0
                'fcst_level': fcst_var_level,
                'obs_level': obs_var_level,
                'fcst_thresh': fcst_var_thresh,
                'obs_thresh': obs_var_thresh,
            }
            model_stat_file = do_string_sub(model_stat_template,
                                            **string_sub_dict)
            lead_avg_file = get_lead_avg_file(stat, model_stat_file, fcst_lead,
                                              output_base_dir)

            logger.debug("Writing model " + str(model_num) + " " + model_name +
                         " " + "with name on plot " + model_plot_name +
                         " lead " + fcst_lead + " average to file: " +
                         lead_avg_file)
            model_stat_average_array = plot_util.calculate_average(
                logger, average_method, stat,
                model_data.loc[[model_plot_name]], model_stat_values_array)
            with open(lead_avg_file, 'a') as file2write:
                file2write.write(fcst_lead)
                if fcst_var_units_plot_title != '':
                    file2write.write(' ' + fcst_var_units_plot_title)
                else:
                    file2write.write(' [NA]')
                if obs_var_units_plot_title != '':
                    file2write.write(' ' + obs_var_units_plot_title)
                else:
                    file2write.write(' [NA]')
                for l in range(len(model_stat_average_array)):
                    file2write.write(' ' + str(model_stat_average_array[l]))
                file2write.write('\n')
            # Write confidence intervals to file, if requested,