示例#1
0
def plot_pt2():

    #pT^2 with coherent incoherent and gamma-gamma components

    ptbin = 0.002
    ptmin = 0.
    ptmax = 0.2  # 0.3

    mmin = 2.8
    mmax = 3.2
    #mmin = 1.5
    #mmax = 2.6

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin / 3., ptmin, ptmax)
    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax)
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)

    ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "#it{p}_{T}^{2} (GeV^{2})")

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    draw = "jRecPt*jRecPt"

    tree.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_incoh.Draw(draw + " >> hPtIncoh", strsel)
    tree_gg.Draw(draw + " >> hPtGG", strsel)

    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, 0., 0.015)
    ut.norm_to_data(hPtIncoh, hPt, rt.kRed, 0.05, 0.16)  # 0.3
    ut.norm_to_data(hPtGG, hPt, rt.kGreen, 0., 0.001)

    hPt.Draw()
    hPtCoh.Draw("same")
    hPtIncoh.Draw("same")
    hPtGG.Draw("same")

    leg = ut.prepare_leg(0.67, 0.78, 0.14, 0.18, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data")
    leg.AddEntry(hPtCoh, "Coherent MC", "l")
    leg.AddEntry(hPtIncoh, "Incoherent MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    leg.Draw("same")

    uoleg = ut.make_uo_leg(hPt, 0.14, 0.9, 0.01, 0.1)
    uoleg.Draw("same")

    gPad.SetLogy()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#2
0
def fit_pt2_incoh():

    #fit to incoherent MC pT^2

    ptbin = 0.008
    ptmin = 0.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax)

    ut.put_yx_tit(hPtIncoh, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "#it{p}_{T}^{2} (GeV^{2})")

    tree_incoh.Draw("jRecPt*jRecPt >> hPtIncoh", strsel)

    #hPtIncoh.Sumw2()
    #hPtIncoh.Scale(1./hPtIncoh.Integral("width"))

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    func_incoh_pt2 = TF1("func_incoh", "[0]*exp(-[1]*x)", 0., 10.)
    func_incoh_pt2.SetParName(0, "A")
    func_incoh_pt2.SetParName(1, "b")
    func_incoh_pt2.SetNpx(1000)
    func_incoh_pt2.SetLineColor(rt.kRed)

    func_incoh_pt2.SetParameters(3000., 5.)

    r1 = (hPtIncoh.Fit(func_incoh_pt2, "RS")).Get()

    hPtIncoh.Draw()
    func_incoh_pt2.Draw("same")

    leg = ut.prepare_leg(0.67, 0.84, 0.14, 0.12, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPtIncoh, "Incoherent MC")
    leg.AddEntry(func_incoh_pt2, "#it{A}*exp(-#it{b}*#it{p}_{T}^{2})", "l")
    leg.Draw("same")

    desc = pdesc(hPtIncoh, 0.72, 0.84, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, rt.kRed)
    desc.itemRes("#it{A}", r1, 0, rt.kRed)
    desc.itemRes("#it{b}", r1, 1, rt.kRed)
    desc.draw()

    #gPad.SetLogy()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#3
0
def plot_jpsi_logPt2():

    # log_10(pT^2)

    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin / 3., ptmin, ptmax)
    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin / 3., ptmin, ptmax)
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)

    ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    draw = "TMath::Log10(jRecPt*jRecPt)"

    tree.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_incoh.Draw(draw + " >> hPtIncoh", strsel)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -1.8)  # norm for coh
    ut.norm_to_data(hPtIncoh, hPt, rt.kRed, -1.1, 1.)  # for incoh
    ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)  # for ggel

    hPt.Draw()
    hPtCoh.Draw("same")
    hPtIncoh.Draw("same")
    hPtGG.Draw("same")

    leg = ut.prepare_leg(0.67, 0.79, 0.14, 0.17, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data")
    leg.AddEntry(hPtCoh, "Coherent MC", "l")
    leg.AddEntry(hPtIncoh, "Incoherent MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    leg.Draw("same")

    uoleg = ut.make_uo_leg(hPt, 0.14, 0.9, 0.01, 0.1)
    uoleg.Draw("same")

    #gPad.SetLogy()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#4
0
def plot_pt_gg():

    #pT of gamma-gamma below and above J/psi

    ptbin = 0.02
    #ptbin = 0.03
    ptmin = 0.
    ptmax = 1.1

    mmin = 2.1
    mmax = 2.6
    #mmin = 3.4
    #mmax = 5.

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)

    #ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin)+" GeV)", "#it{p}_{T} (GeV})")
    ytit = "#gamma#gamma#rightarrow e^{+}e^{-} candidates / " + "({0:.3f}".format(
        ptbin) + " GeV)"
    ut.put_yx_tit(hPt, ytit, "Dielectron #it{p}_{T} (GeV)", 1.5, 1.2)

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    draw = "jRecPt"

    tree.Draw(draw + " >> hPt", strsel)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    ut.norm_to_data(hPtGG, hPt, rt.kGreen, 0., 0.3)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, 0., 0.18)

    hPt.Draw()
    hPtGG.Draw("same")

    leg = ut.prepare_leg(0.67, 0.78, 0.14, 0.18, 0.03)
    leg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    leg.Draw("same")

    pleg = ut.prepare_leg(0.33, 0.8, 0.01, 0.14, 0.035)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#5
0
def plot_vtx_z():

    #primary vertex position along z from data and MC
    vbin = 4.
    vmax = 120.

    mmin = 1.5
    mmax = 5

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hVtx = ut.prepare_TH1D("hVtx", vbin, -vmax, vmax)
    hVtxMC = ut.prepare_TH1D("hVtxMC", vbin/2., -vmax, vmax)

    tree.Draw("jVtxZ >> hVtx", strsel)
    mctree.Draw("jVtxZ >> hVtxMC", strsel)
    ut.norm_to_data(hVtxMC, hVtx, rt.kBlue, -40, 40)

    hVtx.SetYTitle("Counts / {0:.0f} cm".format(vbin));
    hVtx.SetXTitle("#it{z} of primary vertex (cm)");

    hVtx.SetTitleOffset(1.5, "Y")
    hVtx.SetTitleOffset(1.3, "X")

    gPad.SetTopMargin(0.02)
    gPad.SetRightMargin(0.02)
    gPad.SetBottomMargin(0.1)
    gPad.SetLeftMargin(0.11)

    cut_lo = ut.cut_line(-30, 0.8, hVtx)
    cut_hi = ut.cut_line(30, 0.8, hVtx)

    leg = ut.prepare_leg(0.16, 0.82, 0.26, 0.12, 0.025)
    #leg.SetMargin(0.15)
    #leg.SetBorderSize(1)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hVtx, "Data")
    #leg.AddEntry(hVtxMC, "MC, coherent J/#it{#psi}", "l")
    leg.AddEntry(hVtxMC, "MC, #it{#gamma}#it{#gamma} #rightarrow e^{+}e^{-}", "l")
    leg.AddEntry(cut_lo, "Cut at #pm30 cm", "l")

    hVtx.Draw()
    hVtxMC.Draw("same")
    leg.Draw("same")
    cut_lo.Draw("same")
    cut_hi.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#6
0
def plot_zdc_vtx():

    #ZDC vertex from selected events and from all triggered events

    vbin = 0.1
    vmin = -5.
    vmax = 7.

    mmin = 1.5
    mmax = 5.

    can = ut.box_canvas()

    #selection string
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    #make the histograms
    hZdcVtx = ut.prepare_TH1D("hZdcVtx", vbin, vmin, vmax)
    hZdcVtxAll = ut.prepare_TH1D("hZdcVtxAll", vbin / 10., vmin, vmax)

    #convert to meters for plot
    tree.Draw("jZDCVtxZ/100. >> hZdcVtx", strsel)
    treeAll = inp.Get("jAllTree")
    treeAll.Draw("jZDCVtxZ/100. >> hZdcVtxAll")
    ut.norm_to_data(hZdcVtxAll, hZdcVtx, rt.kRed)

    hZdcVtx.SetYTitle("Events / {0:.0f} cm".format(vbin * 100.))
    hZdcVtx.SetXTitle("ZDC vertex along #it{z} (meters)")

    hZdcVtx.SetTitleOffset(1.5, "Y")
    hZdcVtx.SetTitleOffset(1.1, "X")

    gPad.SetTopMargin(0.01)
    gPad.SetRightMargin(0.04)
    gPad.SetBottomMargin(0.08)
    gPad.SetLeftMargin(0.1)

    leg = ut.prepare_leg(0.67, 0.8, 0.28, 0.14, 0.025)
    leg.SetMargin(0.17)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hZdcVtx, "Selected events")
    leg.AddEntry(hZdcVtxAll, "All UPC-JpsiB triggers", "l")

    #gPad.SetLogy()

    hZdcVtx.Draw()
    hZdcVtxAll.Draw("same")
    leg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#7
0
def plot_zdc_tpc_vtx():

    #2D ZDC and TPC vertices

    zbin = 2.
    #zmin = -50.
    #zmax = 100.
    zmin = -100
    zmax = 150

    tbin = 2.
    #tmin = -55.
    #tmax = 55.
    tmin = -110
    tmax = 110

    mmin = 1.5
    mmax = 5.

    can = ut.box_canvas()

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    hVtx = ut.prepare_TH2D("hVtx", tbin, tmin, tmax, zbin, zmin, zmax)

    tree.Draw("jZDCVtxZ:jVtxZ >> hVtx", strsel)
    hVtx.SetXTitle("TPC vertex along #it{z} / " + "{0:.0f} cm".format(zbin))
    hVtx.SetYTitle("ZDC vertex along #it{z} / " + "{0:.0f} cm".format(zbin))

    hVtx.SetTitleOffset(1.5, "Y")
    hVtx.SetTitleOffset(1.1, "X")

    gPad.SetTopMargin(0.02)
    gPad.SetRightMargin(0.09)
    gPad.SetBottomMargin(0.08)
    gPad.SetLeftMargin(0.11)

    leg = ut.prepare_leg(0.16, 0.82, 0.23, 0.05, 0.025)
    leg.SetMargin(0.02)
    leg.SetBorderSize(1)
    ut.add_leg_mass(leg, mmin, mmax)

    hVtx.Draw()
    leg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#8
0
def plot_jpsi_pt2():

    #J/psi pT^2

    ptbin = 0.002
    ptmin = 0.
    ptmax = 0.15

    mmin = 2.8
    mmax = 3.2

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtMC = ut.prepare_TH1D("hPtMC", ptbin / 3., ptmin, ptmax)

    ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "#it{p}_{T}^{2} (GeV^{2})")

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    draw = "jRecPt*jRecPt"

    tree.Draw(draw + " >> hPt", strsel)
    mctree.Draw(draw + " >> hPtMC", strsel)
    ut.norm_to_data(hPtMC, hPt, rt.kBlue, 0., 0.015)

    hPt.Draw()
    hPtMC.Draw("same")

    leg = ut.prepare_leg(0.67, 0.8, 0.14, 0.16, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data")
    leg.AddEntry(hPtMC, "Coherent MC", "l")
    leg.Draw("same")

    uoleg = ut.make_uo_leg(hPt, 0.14, 0.9, 0.01, 0.1)
    uoleg.Draw("same")

    gPad.SetLogy()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#9
0
def plot_jpsi_logPt2():

    #J/psi log_10(pT^2)

    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtMC = ut.prepare_TH1D("hPtMC", ptbin / 3., ptmin, ptmax)

    ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "#it{p}_{T}^{2} (GeV^{2})")

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    draw = "TMath::Log10(jRecPt*jRecPt)"

    tree.Draw(draw + " >> hPt", strsel)
    mctree.Draw(draw + " >> hPtMC", strsel)
    ut.norm_to_data(hPtMC, hPt, rt.kBlue, -5., -1.8)  # norm for coh
    #ut.norm_to_data(hPtMC, hPt, rt.kBlue, -1.1, 1.) # for incoh
    #ut.norm_to_data(hPtMC, hPt, rt.kBlue, -5., -2.4) # for ggel

    hPt.Draw()
    hPtMC.Draw("same")

    leg = ut.prepare_leg(0.67, 0.8, 0.14, 0.16, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data")
    leg.AddEntry(hPtMC, "Coherent MC", "l")
    leg.Draw("same")

    uoleg = ut.make_uo_leg(hPt, 0.14, 0.9, 0.01, 0.1)
    uoleg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#10
0
def pdf_logPt2_prelim():

    #PDF fit to log_10(pT^2) for preliminary figure

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar(
        "x", "Dielectron log_{10}( #it{p}_{T}^{2} ) ((GeV/c)^{2})", draw,
        RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.SetLineWidth(2)
    #fill in binned data
    tree_in.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    print "a =", a

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen + 1)

    print "Int GG:", hPtGG.Integral()

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")

    frame.SetYTitle("J/#psi candidates / ({0:.3f}".format(ptbin) +
                    " (GeV/c)^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    leg = ut.prepare_leg(0.61, 0.77, 0.16, 0.19, 0.03)
    #ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed, 2)
    leg.AddEntry(hx, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(ln, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    pleg = ut.prepare_leg(0.12, 0.75, 0.14, 0.22, 0.03)
    pleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(pleg, mmin, mmax)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    desc = pdesc(frame, 0.14, 0.9, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    #desc.draw()

    #put the sum
    hSum.Draw("same")

    frame.Draw("same")

    #put gamma-gamma and coherent J/psi
    hPtGG.Draw("same")
    hPtCoh.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#11
0
def fit_logPt2_incoh():

    #fit to incoherent log_10(pT^2)

    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    fitran = [-1., -0.1]

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin / 3., ptmin, ptmax)

    ut.put_yx_tit(hPtIncoh, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    draw = "TMath::Log10(jRecPt*jRecPt)"
    tree_incoh.Draw(draw + " >> hPtIncoh", strsel)

    #hPtIncoh.Sumw2()
    #hPtIncoh.Scale(1./hPtIncoh.Integral("width"))

    func_incoh_logPt2 = TF1("func_incoh_logPt2",
                            "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))",
                            -10., 10.)
    func_incoh_logPt2.SetParName(0, "A")
    func_incoh_logPt2.SetParName(1, "b")
    func_incoh_logPt2.SetNpx(1000)
    func_incoh_logPt2.SetLineColor(rt.kRed)

    func_incoh_logPt2.SetParameters(3000., 5.)

    r1 = (hPtIncoh.Fit(func_incoh_logPt2, "RS", "", fitran[0],
                       fitran[1])).Get()

    #create pdf normalized to number of events
    pdf_logPt2 = TF1("pdf_logPt2",
                     "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10., 10.)
    nevt = tree_incoh.Draw(
        "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) + " && " +
        draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    k_norm = nevt / func_incoh_logPt2.Integral(fitran[0], fitran[1])
    pdf_logPt2.SetParameter(0, k_norm * func_incoh_logPt2.GetParameter(0))
    pdf_logPt2.SetParameter(1, func_incoh_logPt2.GetParameter(1))
    #verify the normalization:
    print "PDF integral", pdf_logPt2.Integral(-10., 10.)

    hPtIncoh.Draw()
    func_incoh_logPt2.Draw("same")

    leg = ut.prepare_leg(0.18, 0.78, 0.14, 0.15, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPtIncoh, "Incoherent MC")
    leg.AddEntry(
        func_incoh_logPt2,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    leg.Draw("same")

    desc = pdesc(hPtIncoh, 0.18, 0.78, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, rt.kRed)
    desc.itemRes("#it{A}", r1, 0, rt.kRed)
    desc.itemD("#it{A}", pdf_logPt2.GetParameter(0), -1, rt.kRed)
    desc.itemRes("#it{b}", r1, 1, rt.kRed)
    desc.draw()

    uoleg = ut.make_uo_leg(hPtIncoh, 0.14, 0.9, 0.01, 0.1)
    uoleg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, hPtIncoh)
    l1 = ut.cut_line(fitran[1], 0.9, hPtIncoh)
    l0.Draw()
    l1.Draw()

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#12
0
def pdf_logPt2_incoh():

    #PDF fit to log_10(pT^2)

    #tree_in = tree_incoh
    tree_in = tree

    #ptbin = 0.04
    ptbin = 0.12
    ptmin = -5.
    ptmax = 1.

    mmin = 2.8
    mmax = 3.2

    #fitran = [-5., 1.]
    fitran = [-0.9, 0.1]

    binned = False

    #gamma-gamma 131 evt for pT<0.18

    #output log file
    out = open("out.txt", "w")
    ut.log_results(
        out, "in " + infile + " in_coh " + infile_coh + " in_gg " + infile_gg)
    loglist = [(x, eval(x)) for x in
               ["ptbin", "ptmin", "ptmax", "mmin", "mmax", "fitran", "binned"]]
    strlog = ut.make_log_string(loglist)
    ut.log_results(out, strlog + "\n")

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    dataIN = RooDataSet("data", "data", tree_in, RooArgSet(pT, m))
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = dataIN.reduce(strsel)
    #x is RooRealVar for log(Pt2)
    draw = "TMath::Log10(jRecPt*jRecPt)"
    draw_func = RooFormulaVar("x", "log_{10}( #it{p}_{T}^{2} ) (GeV^{2})",
                              draw, RooArgList(pT))
    x = data.addColumn(draw_func)
    x.setRange("fitran", fitran[0], fitran[1])

    #binned data
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    hPt = TH1D("hPt", "hPt", nbins, ptmin, ptmax)
    tree_in.Draw(draw + " >> hPt", strsel)
    dataH = RooDataHist("dataH", "dataH", RooArgList(x), hPt)

    #range for plot
    x.setMin(ptmin)
    x.setMax(ptmax)
    x.setRange("plotran", ptmin, ptmax)

    #create the pdf
    b = RooRealVar("b", "b", 5., 0., 10.)
    pdf_func = "log(10.)*pow(10.,x)*exp(-b*pow(10.,x))"
    pdf_logPt2 = RooGenericPdf("pdf_logPt2", pdf_func, RooArgList(x, b))

    #make the fit
    if binned == True:
        r1 = pdf_logPt2.fitTo(dataH, rf.Range("fitran"), rf.Save())
    else:
        r1 = pdf_logPt2.fitTo(data, rf.Range("fitran"), rf.Save())

    ut.log_results(out, ut.log_fit_result(r1))

    #calculate norm to number of events
    xset = RooArgSet(x)
    ipdf = pdf_logPt2.createIntegral(xset, rf.NormSet(xset),
                                     rf.Range("fitran"))
    print "PDF integral:", ipdf.getVal()
    if binned == True:
        nevt = tree_incoh.Draw(
            "", strsel + " && " + draw + ">{0:.3f}".format(fitran[0]) +
            " && " + draw + "<{1:.3f}".format(fitran[0], fitran[1]))
    else:
        nevt = data.sumEntries("x", "fitran")

    print "nevt:", nevt
    pdf_logPt2.setNormRange("fitran")
    print "PDF norm:", pdf_logPt2.getNorm(RooArgSet(x))

    #a = nevt/ipdf.getVal()
    a = nevt / pdf_logPt2.getNorm(RooArgSet(x))
    ut.log_results(out, "log_10(pT^2) parametrization:")
    ut.log_results(out, "A = {0:.2f}".format(a))
    ut.log_results(out, ut.log_fit_parameters(r1, 0, 2))
    print "a =", a

    #Coherent contribution
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtCoh.Sumw2()
    #tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_coh.Draw("TMath::Log10(jGenPt*jGenPt) >> hPtCoh", strsel)
    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5., -2.2)  # norm for coh
    #ut.norm_to_data(hPtCoh, hPt, rt.kBlue, -5, -2.1)
    #ut.norm_to_num(hPtCoh, 405, rt.kBlue)
    print "Coherent integral:", hPtCoh.Integral()

    #TMath::Log10(jRecPt*jRecPt)

    #Sartre generated coherent shape
    sartre = TFile.Open(
        "/home/jaroslav/sim/sartre_tx/sartre_AuAu_200GeV_Jpsi_coh_2p7Mevt.root"
    )
    sartre_tree = sartre.Get("sartre_tree")
    hSartre = ut.prepare_TH1D("hSartre", ptbin, ptmin, ptmax)
    sartre_tree.Draw("TMath::Log10(pT*pT) >> hSartre",
                     "rapidity>-1 && rapidity<1")
    ut.norm_to_data(hSartre, hPt, rt.kViolet, -5, -2)  # norm for Sartre

    #gamma-gamma contribution
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)
    tree_gg.Draw(draw + " >> hPtGG", strsel)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, -5., -2.9)
    ut.norm_to_num(hPtGG, 131., rt.kGreen)

    print "Int GG:", hPtGG.Integral()

    #psi' contribution
    psiP = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP.Get("jRecTree")
    hPtPsiP = ut.prepare_TH1D("hPtPsiP", ptbin, ptmin, ptmax)
    psiP_tree.Draw(draw + " >> hPtPsiP", strsel)
    ut.norm_to_num(hPtPsiP, 12, rt.kViolet)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    func_logPt2 = TF1("pdf_logPt2",
                      "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))", -10.,
                      10.)
    func_logPt2.SetParameters(a, b.getVal())
    hInc = ut.prepare_TH1D("hInc", ptbin, ptmin, ptmax)
    ut.fill_h1_tf(hInc, func_logPt2)
    hSum.Add(hInc)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #add psi(2S) contribution
    #hSum.Add(hPtPsiP)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    #create canvas frame
    can = ut.box_canvas()
    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.01)

    frame = x.frame(rf.Bins(nbins), rf.Title(""))
    frame.SetTitle("")
    frame.SetMaximum(75)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")

    print "Int data:", hPt.Integral()

    #plot the data
    if binned == True:
        dataH.plotOn(frame, rf.Name("data"))
    else:
        data.plotOn(frame, rf.Name("data"))

    pdf_logPt2.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2"))
    pdf_logPt2.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                      rf.Name("pdf_logPt2_full"), rf.LineStyle(rt.kDashed))

    frame.Draw()

    amin = TMath.Power(10, ptmin)
    amax = TMath.Power(10, ptmax) - 1
    print amin, amax
    pt2func = TF1("f1", "TMath::Power(10, x)", amin,
                  amax)  #TMath::Power(x, 10)
    aPt2 = TGaxis(-5, 75, 1, 75, "f1", 510, "-")
    ut.set_axis(aPt2)
    aPt2.SetTitle("pt2")
    #aPt2.Draw();

    leg = ut.prepare_leg(0.57, 0.78, 0.14, 0.19, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    hx = ut.prepare_TH1D("hx", 1, 0, 1)
    hx.Draw("same")
    ln = ut.col_lin(rt.kRed)
    leg.AddEntry(hx, "Data")
    leg.AddEntry(hPtCoh, "Sartre MC", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    #leg.AddEntry(ln, "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})", "l")
    #leg.AddEntry(ln, "Incoherent fit", "l")
    leg.Draw("same")

    l0 = ut.cut_line(fitran[0], 0.9, frame)
    l1 = ut.cut_line(fitran[1], 0.9, frame)
    #l0.Draw()
    #l1.Draw()

    desc = pdesc(frame, 0.14, 0.8, 0.054)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", frame.chiSquare("pdf_logPt2", "data", 2), -1,
               rt.kRed)
    desc.itemD("#it{A}", a, -1, rt.kRed)
    desc.itemR("#it{b}", b, rt.kRed)
    desc.draw()

    #put the sum
    #hSum.Draw("same")

    #gPad.SetLogy()

    frame.Draw("same")

    #put gamma-gamma
    hPtGG.Draw("same")
    #put coherent J/psi
    hPtCoh.Draw("same")

    #put Sartre generated coherent shape
    #hSartre.Draw("same")

    #put psi(2S) contribution
    #hPtPsiP.Draw("same")

    leg2 = ut.prepare_leg(0.14, 0.9, 0.14, 0.08, 0.03)
    leg2.AddEntry(
        ln,
        "ln(10)*#it{A}*10^{log_{10}#it{p}_{T}^{2}}exp(-#it{b}10^{log_{10}#it{p}_{T}^{2}})",
        "l")
    #leg2.AddEntry(hPtCoh, "Sartre MC reconstructed", "l")
    #leg2.AddEntry(hSartre, "Sartre MC generated", "l")
    leg2.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#13
0
def plot_pt2_real():

    #pT^2 with realistic normalization for incoherent and gamma-gamma components

    ptbin = 0.002
    ptmin = 0.
    ptmax = 0.2  # 0.3

    mmin = 2.8
    mmax = 3.2

    ngg = 131  # number of gamma-gamma from mass fit

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax)
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)

    ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin) + " GeV^{2})",
                  "#it{p}_{T}^{2} (GeV^{2})")

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    draw = "jRecPt*jRecPt"

    tree.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_gg.Draw(draw + " >> hPtGG", strsel)

    #incoherent functional shape
    func_incoh_pt2 = TF1("func_incoh", "[0]*exp(-[1]*x)", 0., 10.)
    func_incoh_pt2.SetParameters(873.04, 3.28)

    #fill incoherent histogram from functional shape
    ut.fill_h1_tf(hPtIncoh, func_incoh_pt2, rt.kRed)

    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, 0., 0.015)
    ut.norm_to_num(hPtGG, ngg, rt.kGreen)

    hPt.Draw()
    hPtCoh.Draw("same")
    hPtIncoh.Draw("same")
    hPtGG.Draw("same")

    leg = ut.prepare_leg(0.6, 0.78, 0.14, 0.18, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data")
    leg.AddEntry(hPtCoh, "Coherent MC, Sartre", "l")
    leg.AddEntry(hPtIncoh, "Incoherent parametrization", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-} MC", "l")
    leg.Draw("same")

    uoleg = ut.make_uo_leg(hPt, 0.14, 0.9, 0.01, 0.1)
    #uoleg.Draw("same")

    gPad.SetLogy()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#14
0
def plot_pt():

    #pT with coherent incoherent and gamma-gamma components

    ptbin = 0.02
    ptmin = 0.
    ptmax = 1.1

    mmin = 2.8
    mmax = 3.2
    #mmin = 3.4
    #mmax = 5.

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPt = ut.prepare_TH1D("hPt", ptbin, ptmin, ptmax)
    hPtCoh = ut.prepare_TH1D("hPtCoh", ptbin, ptmin, ptmax)
    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax)
    hPtGG = ut.prepare_TH1D("hPtGG", ptbin, ptmin, ptmax)

    #ut.put_yx_tit(hPt, "Events / ({0:.3f}".format(ptbin)+" GeV)", "#it{p}_{T} (GeV})")
    ut.put_yx_tit(hPt,
                  "J/#psi candidates / ({0:.3f}".format(ptbin) + " GeV/c)",
                  "Dielectron #it{p}_{T} (GeV/c)", 1.5, 1.2)

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    draw = "jRecPt"

    tree.Draw(draw + " >> hPt", strsel)
    tree_coh.Draw(draw + " >> hPtCoh", strsel)
    tree_incoh.Draw(draw + " >> hPtIncoh", strsel)
    tree_gg.Draw(draw + " >> hPtGG", strsel)

    ut.norm_to_data(hPtCoh, hPt, rt.kBlue, 0., 0.08)
    ut.norm_to_data(hPtIncoh, hPt, rt.kRed, 0.28, 1.)
    #ut.norm_to_data(hPtGG, hPt, rt.kGreen, 0., 0.03)
    ut.norm_to_num(hPtGG, 131, rt.kGreen + 1)

    #sum of all contributions
    hSum = ut.prepare_TH1D("hSum", ptbin, ptmin, ptmax)
    hSum.SetLineWidth(3)
    #add ggel to the sum
    hSum.Add(hPtGG)
    #add incoherent contribution
    hSum.Add(hPtIncoh)
    #add coherent contribution
    hSum.Add(hPtCoh)
    #set to draw as a lines
    ut.line_h1(hSum, rt.kBlack)

    hPt.Draw()
    hSum.Draw("same")
    hPtCoh.Draw("same")
    hPtIncoh.Draw("same")
    hPtGG.Draw("same")

    leg = ut.prepare_leg(0.64, 0.65, 0.14, 0.3, 0.03)
    leg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPt, "Data", "p")
    leg.AddEntry(hSum, "Sum", "l")
    leg.AddEntry(hPtCoh, "Coherent J/#psi", "l")
    leg.AddEntry(hPtIncoh, "Incoherent J/#psi", "l")
    leg.AddEntry(hPtGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    leg.Draw("same")

    uoleg = ut.make_uo_leg(hPt, 0.14, 0.9, 0.01, 0.1)
    #uoleg.Draw("same")

    pleg = ut.prepare_leg(0.33, 0.8, 0.01, 0.14, 0.035)
    pleg.AddEntry(None, "STAR Preliminary", "")
    pleg.AddEntry(None, "AuAu@200 GeV", "")
    pleg.AddEntry(None, "UPC sample", "")
    pleg.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#15
0
def fit():

    #fit to log_10(pT^2) with components and plot of plain pT^2

    #range in log_10(pT^2)
    ptbin = 0.12
    ptmin = -5.
    ptmax = 0.99  # 1.01

    #range in pT^2
    ptsq_bin = 0.03
    ptsq_min = 1e-5
    ptsq_max = 1

    mmin = 2.8
    mmax = 3.2

    #range for incoherent fit
    fitran = [-0.9, 0.1]

    #number of gamma-gamma events
    ngg = 131

    #number of psi' events
    npsiP = 20

    #input data
    pT = RooRealVar("jRecPt", "pT", 0, 10)
    m = RooRealVar("jRecM", "mass", 0, 10)
    data_all = RooDataSet("data", "data", tree, RooArgSet(pT, m))
    #select for mass range
    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    data = data_all.reduce(strsel)

    #create log(pT^2) from pT
    ptsq_draw = "jRecPt*jRecPt"  # will be used for pT^2
    logPtSq_draw = "TMath::Log10(" + ptsq_draw + ")"
    logPtSq_form = RooFormulaVar("logPtSq", "logPtSq", logPtSq_draw,
                                 RooArgList(pT))
    logPtSq = data.addColumn(logPtSq_form)
    logPtSq.setRange("fitran", fitran[0], fitran[1])

    #bins and range for the plot
    nbins, ptmax = ut.get_nbins(ptbin, ptmin, ptmax)
    logPtSq.setMin(ptmin)
    logPtSq.setMax(ptmax)
    logPtSq.setRange("plotran", ptmin, ptmax)

    #range for pT^2
    ptsq_nbins, ptsq_max = ut.get_nbins(ptsq_bin, ptsq_min, ptsq_max)

    #incoherent parametrization
    bval = RooRealVar("bval", "bval", 3.3, 0, 10)
    inc_form = "log(10.)*pow(10.,logPtSq)*exp(-bval*pow(10.,logPtSq))"
    incpdf = RooGenericPdf("incpdf", inc_form, RooArgList(logPtSq, bval))

    #make the incoherent fit
    res = incpdf.fitTo(data, rf.Range("fitran"), rf.Save())

    #get incoherent norm to the number of events
    lset = RooArgSet(logPtSq)
    iinc = incpdf.createIntegral(lset, rf.NormSet(lset), rf.Range("fitran"))
    inc_nevt = data.sumEntries("logPtSq", "fitran")
    incpdf.setNormRange("fitran")
    aval = RooRealVar("aval", "aval", inc_nevt / incpdf.getNorm(lset))
    #print "A =", aval.getVal()
    #print "b =", bval.getVal()

    #incoherent distribution from log_10(pT^2) function for the sum with gamma-gamma
    hIncPdf = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    func_incoh_logPt2 = TF1("func_incoh_logPt2",
                            "[0]*log(10.)*pow(10.,x)*exp(-[1]*pow(10.,x))",
                            -10., 10.)
    func_incoh_logPt2.SetNpx(1000)
    func_incoh_logPt2.SetLineColor(rt.kMagenta)
    func_incoh_logPt2.SetParameters(
        aval.getVal(),
        bval.getVal())  # 4.9 from incoherent mc, 3.3 from data fit
    ut.fill_h1_tf(hIncPdf, func_incoh_logPt2, rt.kMagenta)

    #gamma-gamma contribution
    hGG = ut.prepare_TH1D_n("hGG", nbins, ptmin, ptmax)
    tree_gg.Draw(logPtSq_draw + " >> hGG", strsel)
    ut.norm_to_num(hGG, ngg, rt.kGreen + 1)

    #sum of incoherent distribution and gamma-gamma
    hSumIncGG = ut.prepare_TH1D_n("hSumIncGG", nbins, ptmin, ptmax)
    hSumIncGG.Add(hIncPdf)
    hSumIncGG.Add(hGG)
    ut.line_h1(hSumIncGG, rt.kMagenta)

    #gamma-gamma in pT^2
    hGG_ptsq = ut.prepare_TH1D_n("hGG_ptsq", ptsq_nbins, ptsq_min, ptsq_max)
    tree_gg.Draw(ptsq_draw + " >> hGG_ptsq", strsel)
    ut.norm_to_num(hGG_ptsq, ngg, rt.kGreen + 1)

    #psi' contribution
    psiP_file = TFile.Open(basedir_mc + "/ana_slight14e4x1_s6_sel5z.root")
    psiP_tree = psiP_file.Get("jRecTree")
    hPsiP = ut.prepare_TH1D_n("hPsiP", nbins, ptmin, ptmax)
    psiP_tree.Draw(logPtSq_draw + " >> hPsiP", strsel)
    ut.norm_to_num(hPsiP, npsiP, rt.kViolet)

    #psi' in pT^2
    hPsiP_ptsq = ut.prepare_TH1D_n("hPsiP_ptsq", ptsq_nbins, ptsq_min,
                                   ptsq_max)
    psiP_tree.Draw(ptsq_draw + " >> hPsiP_ptsq", strsel)
    ut.norm_to_num(hPsiP_ptsq, npsiP, rt.kViolet)

    #create canvas frame
    gStyle.SetPadTickY(1)
    can = ut.box_canvas(1086, 543)  # square area is still 768^2
    can.SetMargin(0, 0, 0, 0)
    can.Divide(2, 1, 0, 0)
    gStyle.SetLineWidth(1)

    can.cd(1)
    ut.set_margin_lbtr(gPad, 0.11, 0.1, 0.01, 0)

    frame = logPtSq.frame(rf.Bins(nbins))
    frame.SetTitle("")
    frame.SetMaximum(80)

    frame.SetYTitle("Events / ({0:.3f}".format(ptbin) + " GeV^{2})")
    frame.SetXTitle("log_{10}( #it{p}_{T}^{2} ) (GeV^{2})")

    frame.GetXaxis().SetTitleOffset(1.2)
    frame.GetYaxis().SetTitleOffset(1.6)

    #plot the data
    data.plotOn(frame, rf.Name("data"), rf.LineWidth(2))

    #incoherent parametrization
    incpdf.plotOn(frame, rf.Range("fitran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf"), rf.LineWidth(2))
    incpdf.plotOn(frame, rf.Range("plotran"), rf.LineColor(rt.kRed),
                  rf.Name("incpdf_full"), rf.LineStyle(rt.kDashed),
                  rf.LineWidth(2))

    frame.Draw()

    #add gamma-gamma contribution
    hGG.Draw("same")

    #sum of incoherent distribution and gamma-gamma
    #hSumIncGG.Draw("same")

    #add psi'
    #hPsiP.Draw("same")

    #legend for log_10(pT^2)
    leg = ut.prepare_leg(0.15, 0.77, 0.28, 0.19, 0.035)
    hxl = ut.prepare_TH1D("hxl", 1, 0, 1)
    hxl.Draw("same")
    ilin = ut.col_lin(rt.kRed, 2)
    ilin2 = ut.col_lin(rt.kRed, 2)
    ilin2.SetLineStyle(rt.kDashed)
    leg.AddEntry(ilin, "Incoherent parametrization, fit region", "l")
    leg.AddEntry(ilin2, "Incoherent parametrization, extrapolation region",
                 "l")
    leg.AddEntry(hGG, "#gamma#gamma#rightarrow e^{+}e^{-}", "l")
    #leg.AddEntry(hxl, "Data", "lp")
    leg.AddEntry(hxl, "Data, log_{10}( #it{p}_{T}^{2} )", "lp")
    leg.Draw("same")

    #----- plot pT^2 on the right -----

    #pT^2 variable from pT
    ptsq_form = RooFormulaVar("ptsq", "ptsq", ptsq_draw, RooArgList(pT))
    ptsq = data.addColumn(ptsq_form)

    #range for pT^2 plot
    ptsq.setMin(ptsq_min)
    ptsq.setMax(ptsq_max)

    #make the pT^2 plot
    can.cd(2)
    gPad.SetLogy()
    #gPad.SetLineWidth(3)
    #gPad.SetFrameLineWidth(1)
    ut.set_margin_lbtr(gPad, 0, 0.1, 0.01, 0.15)

    ptsq_frame = ptsq.frame(rf.Bins(ptsq_nbins), rf.Title(""))

    #print type(ptsq_frame), type(ptsq)

    ptsq_frame.SetTitle("")

    ptsq_frame.SetXTitle("#it{p}_{T}^{2} (GeV^{2})")
    ptsq_frame.GetXaxis().SetTitleOffset(1.2)

    data.plotOn(ptsq_frame, rf.Name("data"), rf.LineWidth(2))

    ptsq_frame.SetMaximum(9e2)
    ptsq_frame.SetMinimum(0.8)  # 0.101

    ptsq_frame.Draw()

    #incoherent parametrization in pT^2 over the fit region, scaled to the plot
    inc_ptsq = TF1("inc_ptsq", "[0]*exp(-[1]*x)", 10**fitran[0], 10**fitran[1])
    inc_ptsq.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())

    #incoherent parametrization in the extrapolation region, below and above the fit region
    inc_ptsq_ext1 = TF1("inc_ptsq_ext1", "[0]*exp(-[1]*x)", 0., 10**fitran[0])
    inc_ptsq_ext2 = TF1("inc_ptsq_ext2", "[0]*exp(-[1]*x)", 10**fitran[1], 10)
    inc_ptsq_ext1.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext1.SetLineStyle(rt.kDashed)
    inc_ptsq_ext2.SetParameters(aval.getVal() * ptsq_bin, bval.getVal())
    inc_ptsq_ext2.SetLineStyle(rt.kDashed)

    inc_ptsq.Draw("same")
    inc_ptsq_ext1.Draw("same")
    inc_ptsq_ext2.Draw("same")

    #add gamma-gamma in pT^2
    hGG_ptsq.Draw("same")

    #add psi' in pT^2
    #hPsiP_ptsq.Draw("same")

    #redraw the frame
    #ptsq_frame.Draw("same")

    ptsq_frame.GetXaxis().SetLimits(-9e-3, ptsq_frame.GetXaxis().GetXmax())

    #vertical axis for pT^2 plot
    xpos = ptsq_frame.GetXaxis().GetXmax()
    ypos = ptsq_frame.GetMaximum()
    ymin = ptsq_frame.GetMinimum()

    ptsq_axis = TGaxis(xpos, 0, xpos, ypos, ymin, ypos, 510, "+GL")
    ut.set_axis(ptsq_axis)
    ptsq_axis.SetMoreLogLabels()

    ptsq_axis.SetTitle("Events / ({0:.3f}".format(ptsq_bin) + " GeV^{2})")
    ptsq_axis.SetTitleOffset(2.2)

    ptsq_axis.Draw()

    #legend for input data
    #dleg = ut.prepare_leg(0.4, 0.77, 0.14, 0.18, 0.035)
    dleg = ut.prepare_leg(0.4, 0.71, 0.16, 0.24, 0.035)
    dleg.AddEntry(None, "#bf{|#kern[0.3]{#it{y}}| < 1}", "")
    ut.add_leg_mass(dleg, mmin, mmax)
    dleg.AddEntry(None, "AuAu@200 GeV", "")
    dleg.AddEntry(None, "UPC sample", "")
    dleg.AddEntry(hxl, "Data, #it{p}_{T}^{2}", "lp")
    dleg.Draw("same")

    #ut.invert_col_can(can)
    can.SaveAs("01fig.pdf")
示例#16
0
def fit_vtx_z():

    #gaussian fit to vertex z-position
    datamc = False  #true - data, false - mc

    if datamc:
        vbin = 4.
    else:
        vbin = 2
    vmax = 120.

    mmin = 1.5
    mmax = 5.

    if datamc:
        fit_lo = -30.
        fit_hi = 35.
    else:
        fit_lo = -40.
        fit_hi = 45.
    fitcol = rt.kBlue

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    out = open("out.txt", "w")

    can = ut.box_canvas()

    hVtx = ut.prepare_TH1D("hVtx", vbin, -vmax, vmax)
    if datamc:
        tree.Draw("jVtxZ >> hVtx", strsel)
    else:
        mctree.Draw("jVtxZ >> hVtx", strsel)

    f1 = TF1("f1", "gaus", fit_lo, fit_hi)
    f1.SetNpx(1000)
    f1.SetLineColor(fitcol)

    #make the fit
    r1 = (hVtx.Fit(f1, "RS")).Get()
    out.write(ut.log_tfit_result(r1))

    hVtx.SetYTitle("Counts / {0:.0f} cm".format(vbin));
    hVtx.SetXTitle("#it{z} of primary vertex (cm)");

    hVtx.SetTitleOffset(1.5, "Y")
    hVtx.SetTitleOffset(1.3, "X")

    gPad.SetTopMargin(0.02)
    gPad.SetRightMargin(0.02)
    gPad.SetBottomMargin(0.1)
    gPad.SetLeftMargin(0.11)

    leg = ut.prepare_leg(0.15, 0.82, 0.28, 0.12, 0.025)
    leg.SetMargin(0.17)
    ut.add_leg_mass(leg, mmin, mmax)
    if datamc:
        leg.AddEntry(hVtx, "Data")
    else:
        leg.AddEntry(hVtx, "Embedding MC #gamma#gamma")
    leg.AddEntry(f1, "Gaussian fit", "l")

    #fit parameters on the plot
    desc = pdesc(hVtx, 0.14, 0.82, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", r1.Chi2()/r1.Ndf(), -1, fitcol)
    desc.prec = 2
    desc.itemRes("mean", r1, 1, fitcol)
    desc.itemRes("#it{#sigma}", r1, 2, fitcol)
    desc.itemRes("norm", r1, 0, fitcol)

    hVtx.Draw()
    leg.Draw("same")
    desc.draw()

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#17
0
def fit_pt_incoh():

    #fit to incoherent MC pT

    ptbin = 0.015
    #ptbin = math.sqrt(0.005)
    ptmin = 0.
    ptmax = 1.4

    mmin = 2.8
    mmax = 3.2

    fitran = [0.4, 1.]

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    can = ut.box_canvas()

    hPtIncoh = ut.prepare_TH1D("hPtIncoh", ptbin, ptmin, ptmax)
    ut.put_yx_tit(hPtIncoh, "Events / ({0:.3f}".format(ptbin) + " GeV)",
                  "#it{p}_{T} (GeV)")

    tree_incoh.Draw("jRecPt >> hPtIncoh", strsel)

    print "Input events:", hPtIncoh.GetEntries()
    print "Histogram integral:", hPtIncoh.Integral()
    print "Histogram integral (w):", hPtIncoh.Integral("width")

    #hPtIncoh.Sumw2()
    #hPtIncoh.Scale(1./hPtIncoh.Integral("width"))

    ut.set_margin_lbtr(gPad, 0.11, 0.09, 0.01, 0.02)

    func_incoh = TF1("func_incoh", "2*[0]*x*exp(-[1]*x*x)", 0., 10.)
    func_incoh.SetParName(0, "A")
    func_incoh.SetParName(1, "b")
    func_incoh.SetNpx(1000)
    func_incoh.SetLineColor(rt.kRed)

    func_incoh.SetParameters(3000., 5.)

    r1 = (hPtIncoh.Fit(func_incoh, "RS", "", fitran[0], fitran[1])).Get()

    print "Fit integral:", func_incoh.Integral(0., 10.)

    hPtIncoh.Draw()
    func_incoh.Draw("same")

    #normalize fit function to number of events
    pdf_incoh = TF1("pdf_incoh", "2*[0]*x*exp(-[1]*x*x)", 0., 10.)
    pdf_incoh.SetParName(0, "A")
    pdf_incoh.SetParName(1, "b")
    #    tree_incoh.Draw("jRecPt >> hPtIncoh", strsel)
    #strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)
    nevt = tree_incoh.Draw(
        "", strsel +
        " && jRecPt>{0:.3f} && jRecPt<{1:.3f}".format(fitran[0], fitran[1]))
    k_norm = nevt / func_incoh.Integral(fitran[0], fitran[1])
    pdf_incoh.SetParameter(0, k_norm * func_incoh.GetParameter(0))
    pdf_incoh.SetParameter(1, func_incoh.GetParameter(1))
    #verify the normalization:
    print "Function integral after norm:", pdf_incoh.Integral(0., 10.)

    #create pdf for pT^2 and verify normalization
    pdf_pt2 = TF1("pdf_pt2", "[0]*exp(-[1]*x)", 0., 10.)
    pdf_pt2.SetParameter(0, pdf_incoh.GetParameter(0))
    pdf_pt2.SetParameter(1, pdf_incoh.GetParameter(1))
    print "PDF for pT^2 integral:", pdf_pt2.Integral(0., 10.)

    leg = ut.prepare_leg(0.67, 0.84, 0.14, 0.12, 0.03)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hPtIncoh, "Incoherent MC")
    leg.AddEntry(func_incoh, "2#it{A}*#it{p}_{T}exp(-#it{b}*#it{p}_{T}^{2})",
                 "l")
    leg.Draw("same")

    desc = pdesc(hPtIncoh, 0.72, 0.84, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, rt.kRed)
    desc.prec = 2
    desc.itemRes("#it{A}", r1, 0, rt.kRed)
    desc.itemD("#it{A}", pdf_incoh.GetParameter(0), -1, rt.kRed)
    desc.prec = 3
    desc.itemRes("#it{b}", r1, 1, rt.kRed)
    desc.draw()

    l0 = ut.cut_line(fitran[0], 0.9, hPtIncoh)
    l1 = ut.cut_line(fitran[1], 0.9, hPtIncoh)
    l0.Draw()
    l1.Draw()

    uoleg = ut.make_uo_leg(hPtIncoh, 0.14, 0.9, 0.01, 0.1)
    uoleg.Draw("same")

    ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")
示例#18
0
def plot_zdc_tpc_vtx_diff():

    #difference between TPC and ZDC vertex

    dbin = 2.5
    dmin = -90
    dmax = 130
    #dmin = -1500
    #dmax = 2000

    mmin = 1.5
    mmax = 5.

    fitcol = rt.kBlue

    out = open("out.txt", "w")
    ut.log_results(out, "in " + infile)
    strlog = "dbin " + str(dbin) + " dmin " + str(dmin) + " dmax " + str(dmax)
    strlog += " mmin " + str(mmin) + " mmax " + str(mmax) + "\n"
    ut.log_results(out, strlog)

    can = ut.box_canvas()

    strsel = "jRecM>{0:.3f} && jRecM<{1:.3f}".format(mmin, mmax)

    hDVtx = ut.prepare_TH1D("hDVtx", dbin, dmin, dmax)

    tree.Draw("jZDCVtxZ-jVtxZ >> hDVtx", strsel)

    #fit function
    f1 = TF1("f1", "gaus+[3]", -50, 105)
    f1.SetNpx(1000)
    f1.SetLineColor(fitcol)
    f1.SetParameter(0, 77)
    f1.SetParameter(1, 25)
    f1.SetParameter(2, 13)
    f1.SetParameter(3, 5)
    f1.SetParName(0, "norm")
    f1.SetParName(1, "mean")
    f1.SetParName(2, "sigma")
    f1.SetParName(3, "ofs")

    #make the fit
    r1 = (hDVtx.Fit(f1, "RS")).Get()
    out.write(ut.log_tfit_result(r1))

    #r1.Print()

    #fraction of events within +/- 4 sigma
    t1 = tree.CopyTree(strsel)
    nall = t1.GetEntries()
    lo = f1.GetParameter(1) - 4. * f1.GetParameter(2)
    hi = f1.GetParameter(1) + 4. * f1.GetParameter(2)
    nsel = t1.Draw(
        "",
        "(jZDCVtxZ-jVtxZ)>{0:.3f} && (jZDCVtxZ-jVtxZ)<{1:.3f}".format(lo, hi))
    fraction = float(nsel) / float(nall)
    err = fraction * ma.sqrt(float(nall - nsel) / (nall * nsel))
    ut.log_results(out, "Fraction of events within +/- 4 sigma")
    ut.log_results(out, "4sigma interval: " + str(lo) + " " + str(hi))
    ut.log_results(out, "nall: " + str(nall))
    ut.log_results(out, "nsel: " + str(nsel))
    ut.log_results(out, "f_4s: {0:.3f} +/- {1:.3f}".format(fraction, err))
    print("4sigma interval:", lo, hi)
    print("nall:", nall)
    print("nsel:", nsel)
    print("f_4s: {0:.3f} +/- {1:.3f}".format(fraction, err))

    hDVtx.SetYTitle("Events / {0:.1f} cm".format(dbin))
    hDVtx.SetXTitle("Vertex #it{z}_{ZDC} - #it{z}_{TPC} (cm)")

    hDVtx.SetTitleOffset(1.5, "Y")
    hDVtx.SetTitleOffset(1.3, "X")

    gPad.SetTopMargin(0.012)
    gPad.SetRightMargin(0.04)
    gPad.SetBottomMargin(0.1)
    gPad.SetLeftMargin(0.1)

    #fit parameters on the plot
    desc = pdesc(hDVtx, 0.16, 0.84, 0.057)
    desc.set_text_size(0.03)
    desc.itemD("#chi^{2}/ndf", r1.Chi2() / r1.Ndf(), -1, fitcol)
    desc.prec = 2
    desc.itemRes("norm", r1, 0, fitcol)
    desc.itemRes("mean", r1, 1, fitcol)
    desc.itemRes("#it{#sigma}", r1, 2, fitcol)
    desc.itemRes("ofs", r1, 3, fitcol)

    #cut lines at mean +/- 4sigma
    #cut_lo = ut.cut_line(-20, 0.5, hDVtx)
    #cut_hi = ut.cut_line(70, 0.5, hDVtx)

    leg = ut.prepare_leg(0.14, 0.82, 0.28, 0.136, 0.025)
    leg.SetMargin(0.17)
    ut.add_leg_mass(leg, mmin, mmax)
    leg.AddEntry(hDVtx, "Data")
    leg.AddEntry(f1, "Gaussian + offset", "l")
    #leg.AddEntry(cut_lo, "4#it{#sigma} at -20 and 70 cm", "l")

    hDVtx.Draw()
    leg.Draw("same")
    desc.draw()
    #cut_lo.Draw("same")
    #cut_hi.Draw("same")

    #ut.invert_col(rt.gPad)
    can.SaveAs("01fig.pdf")