def plot_var_result_example(ax): ax.set_xlim([-0.0,5.5]) data_hr_ht = core.get_data('fig6/variance_hr_ht.npy') data_lr_ht = core.get_data('fig6/variance_lr_ht.npy') data_hr_lt = core.get_data('fig6/variance_hr_lt.npy') time_params=core.get_data('fig6/time_parameters.npy').item() weighttrace=np.concatenate(((data_hr_ht,),(data_lr_ht,),(data_hr_lt,))) core.show_axis(ax) core.make_spines(ax) ax.set_prop_cycle(cycler('color',[core.label_to_color["hr_ht"],core.label_to_color["lr_ht"],core.label_to_color["hr_lt"]] )) plotf.trace_plot(ax,weighttrace,time_params,linewidth=core.linewidth["normal"]) ax.axvline(x=5,color=core.label_to_color["aux_lines"],linewidth=core.linewidth["aux_lines"],ls="dashed") ax.text(5.,75.,r"$t_0$") ax.set_xlabel(core.x_labels["trace_plot"]) ax.set_ylabel(core.y_labels["trace_plot"]) ax.legend((r"$w_1$",r"$w_2$",r"$w_3$"),loc=2,fontsize=8.,handlelength=0.5,frameon=False) pass
def plot_attenuation_example_abs(ax): data_prox = core.get_data('fig6/attenuation_proximal_synapse.npy') data_dist = core.get_data('fig6/attenuation_distal_synapse.npy') time_params=core.get_data('fig6/time_parameters.npy').item() ax.set_prop_cycle(cycler('color',[core.label_to_color["attenuation_ldist"],core.label_to_color["attenuation_hdist"]] )) weighttrace=np.concatenate(((data_prox,),(data_dist,))) core.show_axis(ax) core.make_spines(ax) plotf.trace_plot(ax,weighttrace,time_params,perc=False,linewidth=core.linewidth["normal"]) ax.set_xlabel(core.x_labels["trace_plot"]) ax.set_ylabel(core.y_labels["trace_plot_dend_abs"]) # ax.legend((r"$d=3\mu m$",r"$d=7\mu m$"),loc=2,fontsize=8.,handlelength=0.5,frameon=False) pass
def plot_phase3(ax): data_hom = core.get_data('fig5/w_hom_phase3.npy') data_het = core.get_data('fig5/w_het_phase3.npy') time_params = core.get_data('fig5/time_parameters.npy').item() ax.set_xlim([-.5, 5.5]) x_ticks = np.array((0., 2.5, 5.)) ax.xaxis.set_ticks(x_ticks) weighttrace = np.concatenate(((data_hom, ), (data_het, ))) ax.set_prop_cycle( cycler('color', [core.label_to_color["stim"], core.label_to_color["unstim"]])) core.show_axis(ax) core.make_spines(ax) plotf.trace_plot(ax, weighttrace, time_params, linewidth=core.linewidth["normal"]) ax.axvline(x=0, color=core.label_to_color["aux_lines"], linewidth=core.linewidth["aux_lines"], ls="dashed") ax.text(0., 99.05, r"$t_0$") ax.axvline(x=5, color=core.label_to_color["aux_lines"], linewidth=core.linewidth["aux_lines"], ls="dashed") ax.text(5., 99.05, r"$t_1$") ax.set_xlabel(core.x_labels["trace_plot"]) ax.set_ylabel(core.y_labels["trace_plot"]) ax.legend((r"$w_{\rm st}$", r"$w_{\rm ust}$"), loc=0, fontsize=8., labelspacing=0.1, borderaxespad=0.1, borderpad=0., handlelength=0.5, frameon=False) pass
def plot_phase1(ax): data_hom = core.get_data('fig5/w_hom_phase1.npy') data_het = core.get_data('fig5/w_het_phase1.npy') time_params = core.get_data('fig5/time_parameters.npy').item() ax.set_xlim([-.5, 5.5]) x_ticks = np.array((0., 2.5, 5.)) ax.xaxis.set_ticks(x_ticks) weighttrace = np.concatenate(((data_hom, ), (data_het, ))) ax.set_prop_cycle( cycler('color', [core.label_to_color["stim"], core.label_to_color["unstim"]])) core.show_axis(ax) core.make_spines(ax) plotf.trace_plot(ax, weighttrace, time_params, linewidth=core.linewidth["normal"]) ax.axvline(x=0, color=core.label_to_color["aux_lines"], linewidth=core.linewidth["aux_lines"], ls="dashed") ax.text(0., 10., r"$t_0$") ax.axvline(x=5, color=core.label_to_color["aux_lines"], linewidth=core.linewidth["aux_lines"], ls="dashed") ax.text(5., 10., r"$t_1$") ax.set_xlabel(core.x_labels["trace_plot"]) ax.set_ylabel(core.y_labels["trace_plot"]) pass