0.91484382948417953, 0.91484382948417953, 0.91509144783897012, 0.91665816586759163, 0.91717666258669917, 0.92136210246446459, 0.92136210246446459, 0.92405452495644158, 0.92405452495644158, 0.92696399345335523 ]) fscore_metadata_no_svd_random.append([ 0.0, 0.0, 0.30198446937014672, 0.58478038815117472, 0.58478038815117472, 0.58532227185705177, 0.72376963350785328, 0.72376963350785328, 0.74567417564479266, 0.74679417517930879, 0.75023582433707159, 0.8216451857467777, 0.82221379833206987, 0.82596739343940284, 0.84447900466562986, 0.8568035625927759, 0.85702978133966556, 0.85960396039603959, 0.86617174959871579, 0.86617174959871579, 0.88902077151335313, 0.88902077151335313, 0.88902077151335313, 0.88902077151335313, 0.89243813467415956, 0.88971742543171106, 0.88971742543171106, 0.89410372707552754, 0.89410372707552754, 0.89410372707552754, 0.8890005022601708, 0.88732677244426594, 0.89332401955892626, 0.89365951073389926, 0.89779280174985099 ]) average_metadata_no_svd_random = list( np.mean(np.matrix(fscore_metadata_no_svd_random), axis=0).A1) ranges = [label_random, label_0, label_potential] list = [ average_metadata_no_svd_random, average_metadata_no_svd, average_metadata_no_svd_absolute_potential ] names = ["Random", "Round-robin", "Potential prediction"] plot_list_latex(ranges, list, names, "Flights", x_max=200)
0.68916625923902108, 0.68810233990545633, 0.72854729551752351, 0.72753034591360399, 0.72806657330679936, 0.73634726526509764, 0.697587070339176, 0.69853880268305202, 0.6986324792055707, 0.69867698435582615, 0.70774194643979149, 0.72170204783073311, 0.73280706993918332, 0.73005324986240139, 0.75145071397031471, 0.7333233275572717, 0.73322578554789686, 0.74274468129732296, 0.75949473360175468, 0.75832009080590246, 0.75838365915592332, 0.83748186108532807, 0.83750375861212434, 0.84416974984268389, 0.85507194303352985, 0.86163133748359166, 0.86692910296483272, 0.86109760130731661, 0.86186238811976301, 0.8636445445055646, 0.89151365017749062, 0.89473968923722158, 0.89686158204594757, 0.89606242004011805, 0.89770986568090039 ]) average_metadata_no_svd_absolute_potential_20error = list( np.mean(np.matrix(fscore_metadata_no_svd_absolute_potential_20error), axis=0).A1) ranges = [label_potential, label_potential, label_potential, label_potential] list = [ average_metadata_no_svd_absolute_potential, average_metadata_no_svd_absolute_potential_05error, average_metadata_no_svd_absolute_potential_10error, average_metadata_no_svd_absolute_potential_20error ] names = [ "No User Error", "5\% User Error", "10\% User Error", "20\% User Error" ] plot_list_latex(ranges, list, names, "BlackOak", x_max=350)
0.67453625632377734, 0.67453625632377734, 0.70829909613804432, 0.70829909613804432, 0.70829909613804432, 0.70829909613804432, 0.70829909613804432, 0.70829909613804432, 0.72918350848827806, 0.72918350848827806, 0.72918350848827806, 0.72918350848827806, 0.72918350848827806, 0.8954372623574145, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.90273843248347496, 0.91134413727359387, 0.91134413727359387, 0.91134413727359387, 0.91134413727359387, 0.91134413727359387, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.93271028037383186, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511, 0.99007936507936511 ]) average_metadata_no_svd_random = list( np.mean(np.matrix(fscore_metadata_no_svd_random), axis=0).A1) ranges = [label_random, label_0, label_potential] list = [ average_metadata_no_svd_random, average_metadata_no_svd, average_metadata_no_svd_absolute_potential ] names = ["Random", "Round-robin", "Potential prediction"] plot_list_latex(ranges, list, names, "Hospital", x_max=800)
average_001_02_opt = [ 0.0, 0.0, 0.0, 0.16054503410666085, 0.1742153678163337, 0.175188264462044, 0.17800861736869286, 0.18723517157321715, 0.18712116127485837, 0.18942693706942779, 0.1887192639499303, 0.18984482431443722, 0.19068199462259514, 0.19083405040995338 ] average_001_02_round = [ 0.0, 0.0, 0.0, 0.16054503410666085, 0.16123376011436252, 0.11867152703903208, 0.12126007977224942, 0.083813880826394183, 0.083854838905432549, 0.080477359248977101, 0.080845752592025491, 0.10537650533256877, 0.10453070277460338, 0.10527981465983556 ] ranges = [labels_optimum, labels_optimum] list = [average_001_02_opt, average_001_02_round] names = ["optimum", "round robin"] plot_list(ranges, list, names, "Synthetic", x_max=200, end_of_round=28) plot_list_latex(ranges, list, names, "Synthetic", x_max=200) plot_integral(ranges, list, names, "Synthetic", x_max=200, x_min=28, sorted=True) #plot_end(ranges, list, names, "Synthetic", x_max=200,x_min=28, sorted=True) #plot_outperform(ranges, list, names, "Flights", 0.7366, x_max=200) #plot_outperform(ranges, list, names, "Flights", 0.9, x_max=200)
average_metadata_no_svd_softcertainty_squared = list(np.mean(np.matrix(fscore_metadata_no_svd_softcertainty_squared), axis=0).A1) ranges = [label_random, label_0, label_potential, label_predictionchange, label_mincertainty, label_crossval, label_softcertainty_squared] list = [average_metadata_no_svd_random, average_metadata_with_extr_number, average_metadata_no_svd_absolute_potential, average_metadata_no_svd_predictionchange, average_metadata_no_svd_mincertainty, average_metadata_no_svd_crossval, average_metadata_no_svd_softcertainty_squared] names = ["Random", "Round-robin", "Potential prediction", "by max prediction change", "by max uncertainty", "by min crossval", "by normalized squared uncertainty"] plot_list_latex(ranges, list, names, "Address", x_max=200) plot_list(ranges, list, names, "Address", x_max=200) #plot_integral(ranges, list, names, "Address", x_max=350) #plot_integral_latex(ranges, list, names, "Address", x_max=350) #plot_outperform_latex(ranges, list, names, "Address",0.904, x_max=350)