示例#1
0
import dash_core_components as dcc
import dash_html_components as html
from urllib.request import urlopen
import json

df = pd.read_csv('language_data.csv')

# Geojson (the country borders for the choropleth map)
with urlopen(
        'https://raw.githubusercontent.com/datasets/geo-countries/master/data/countries.geojson'
) as response:
    geojson_countries = json.load(response)

app = dash.Dash(__name__)
server = app.server
px.set_mapbox_access_token(open(".mapbox_token.txt").read())
df['Value'] = 'Not Spoken'

languages_list = [{
    'label': 'English',
    'value': 'English'
}, {
    'label': 'French',
    'value': 'French'
}, {
    'label': 'Russian',
    'value': 'Russian'
}, {
    'label': 'Albanian',
    'value': 'Albanian'
}, {
示例#2
0
import plotly.graph_objs as go
import json
import scipy.optimize as optim
from fbprophet import Prophet
from app import app


def func_logistic(t, a, b, c):
    return c / (1 + a * np.exp(-b * t))


# load data and geojson
df = pd.read_csv('apps/data/covid_19_india.csv')

px.set_mapbox_access_token(
    "pk.eyJ1IjoiNDRoaW1hbnNodTQ0NCIsImEiOiJjazh5azlnNGgwMnJwM2xxcDJyNzFhMG05In0.srzRed7pv2bC2PSGEuRaNg"
)

path = "apps/states2.json"
f = open(path, "r")
state_geo = json.loads(f.read())

states_list = [{'label': i, 'value': i} for i in df['states'].unique()]
duration_list = [{
    'label': 'Tomorrow',
    'value': 1
}, {
    'label': 'Next week',
    'value': 7
}, {
    'label': 'Next month',
    "#10523e",
]
ADOPTION_RATES = [
    15, 25, 50
]  #change this based on LP output scenarios that will be displayed
DEFAULT_OPACITY = 0.5
VALID_USERNAME_PASSWORD_PAIRS = get_logins(
    os.path.join(APP_PATH, os.path.join(".secret", "login_credentials.json")))

#set CSS style sheets
styles = {'pre': {'border': 'thin lightgrey solid', 'overflowX': 'scroll'}}

#mapbox variables
mapbox_style = "mapbox://styles/butlerbt/ckhma6w7n12ic19pghqpyanfq"
mapbox_access_token = "pk.eyJ1IjoiYnV0bGVyYnQiLCJhIjoiY2s2aDJqNzl2MDBqdDNqbWlzdWFqYjZnOCJ9.L4RJNdK2aqr6kHcHZxksXw"
px.set_mapbox_access_token(mapbox_access_token)

#login for use in development - to be removed when launched live
auth = dash_auth.BasicAuth(app, VALID_USERNAME_PASSWORD_PAIRS)

#html layout of app
app.layout = html.Div(children=[
    html.Div(
        id="root",
        children=[
            html.Div(
                id="header",
                children=[
                    html.Img(id="logo", src=app.get_asset_url("rmi-logo.svg")),
                    html.H4(children="Los Angeles EV TNC Modeling"),
                ],
示例#4
0
import plotly.graph_objs as go
import plotly.express as px

import config, pipeline as pp

#----------------------------------------------------------------------------------

client = boto3.client('s3', aws_access_key_id=os.environ['AWS_ID'], aws_secret_access_key=os.environ['AWS_KEY'])

model_obj = client.get_object(Bucket="nyc-taxi-trip-processing-data", Key="data/model.pickle")
model = pickle.loads(model_obj['Body'].read())

df_map_obj = client.get_object(Bucket="nyc-taxi-trip-processing-data", Key="data/taxi_trip_samples_2.csv")
df_map = pd.read_csv(StringIO(df_map_obj['Body'].read().decode('utf-8')))

px.set_mapbox_access_token(os.environ["MAPBOX"])

fig = px.scatter_mapbox(df_map,
                        lat="latitude", lon="longitude",
                        color="type", opacity=0.7,
                        size="dist_mile", size_max=12, zoom=10,
                        color_continuous_scale=px.colors.cyclical.IceFire,
                        animation_frame="pickup_hour")

fig.update_layout(width=900, height=500, font_family="Verdana")
graphJSON = json.dumps(fig, cls=plotly.utils.PlotlyJSONEncoder)

#----------------------------------------------------------------------------------

# Flask instance
app = Flask(__name__)
示例#5
0
def updatemap(input_data, day):
    #print('INSIDE UPDATE MAP')

    px.set_mapbox_access_token(
        "pk.eyJ1Ijoic21taXNocmEiLCJhIjoiY2s1eGF0aGNtMWJvczNxbXg2dDJiaG1kaiJ9.UOxmGAsTrKH_m4wCZTgrNg"
    )
    df = px.data.carshare()
    #print(df.head())
    #print(df.dtypes)
    #print(dff.head())

    #Size is number of offurences of the category of crime
    #Color is number of unique types of crimes

    #plotsize is a list
    filtered_df = dff[[
        'Category', 'PdDistrict', 'Resolution', 'Time', 'X', 'Y'
    ]][(dff['DayOfWeek'].isin(day) & dff['Category'].isin(input_data))]

    #Number the crime
    crime_dict = {}

    i = 0
    for crime in filtered_df['Category'].unique():
        crime_dict[crime] = i
        i += 1

    #crimeSize
    crimeSize = []
    for index, row in filtered_df.iterrows():
        crimeSize.append(crime_dict[row['Category']])

    #print('Number of records ', filtered_df.shape[0])
    #print(len(crimeSize))

    #CrimeColor
    #At a particular latitude and longitude , highest number of crimes -> category

    crime_list = []

    colorDict = {}
    crimeDict = {}

    x_list = []
    y_list = []
    crime_list = []
    num_crime_list = []
    count = 0
    for index in filtered_df.index:
        x = float(filtered_df['X'][index])
        y = float(filtered_df['Y'][index])
        #Get X and Y and store in list
        #x_list.append(x)
        #y_list.append(y)

        crime = input_data[0]

        #location and highest number of crimes
        #tempCount = filtered_df[(filtered_df.X == x) & (filtered_df.Y == y)].shape[0]
        flag = 0

        for i in input_data:
            tempCount = filtered_df[(filtered_df.X == x) & (filtered_df.Y == y)
                                    & (filtered_df.Category == i)].shape[0]
            if colorDict.get((x, y), 0) > tempCount:
                flag = 0
                continue
            else:
                flag = 1
                colorDict[(x, y)] = tempCount
                crime = i

        #num_crime_list.append(colorDict.get((x,y), 0))
        #Location and highest crime category
        crimeDict[(x, y)] = crime

        #print('Appended' ,count, num_crime_list[count], crime_list[count])
        #count += 1

    #Getting X and Y
    xy_list = colorDict.keys()
    for i in xy_list:
        x_list.append(i[0])
        y_list.append(i[1])
    for (x, y) in colorDict:
        num_crime_list.append(colorDict[(x, y)])
    for (x, y) in crimeDict:
        crime_list.append(crime_dict[crimeDict[(x, y)]])
    #print('xlist', len(x_list))
    #print('ylist', len(y_list))
    #print('Num crime',len(num_crime_list))
    #print('crime_list',len(crime_list))
    #print(len(crimeDict))

    #Create a new data frame (X,Y,Crime,NumberofCrime)
    d = {
        'X': x_list,
        'Y': y_list,
        'Crime': crime_list,
        'NumOfCrime': num_crime_list
    }
    new_df = pd.DataFrame(data=d)
    #print(new_df.head())
    #print(new_df.dtypes)

    fig = px.scatter_mapbox(new_df,
                            lat="Y",
                            lon="X",
                            color="Crime",
                            size="NumOfCrime",
                            color_continuous_scale=px.colors.cyclical.IceFire,
                            size_max=15,
                            zoom=10)

    return fig
示例#6
0
        'r': 2,
        't': 5,
        'b': 5
    })

#### Animated Map ####

#get mapbox API key for plotting
path = '/Users/mitchellkrieger/.secret/mapbox_api.json'

with open(path) as f:
    api = json.load(f)

api_key = api['api_token']

px.set_mapbox_access_token(api_key)

#plot
animap = px.scatter_mapbox(animation_data,
                           lat="_lat",
                           lon="_long",
                           animation_frame='dt',
                           animation_group='id',
                           color="percent_full",
                           size="avail_bikes",
                           color_continuous_scale=px.colors.cyclical.IceFire,
                           size_max=15,
                           zoom=10,
                           width=600,
                           height=650)
示例#7
0
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State
import plotly.express as px

from emp.app import app
from emp.data.datasets import earthquakes
import emp.regressor as regressor

logger = logging.getLogger(__name__)

# Defaults are the center of the contiguous US
default_latitude = 39.8283
default_longitude = -98.5795

px.set_mapbox_access_token(os.getenv('MAPBOX_ACCESS_TOKEN'))

scattermap = px.scatter_mapbox(
    center={ 'lat': default_latitude, 'lon': default_longitude },
    color=earthquakes.magnitude,
    data_frame=earthquakes,
    height=500, 
    lat=earthquakes.latitude, 
    lon=earthquakes.longitude,
    # Setting the size & opacity like this allows the larger earthquakes to stand out on the map
    opacity=earthquakes.magnitude / 10,
    size=earthquakes.magnitude ** 5,
    size_max=25,
    zoom=3)

# Shrink the margins (defaults 80) on the top and bottom to 5px
示例#8
0
import gc
import requests
import pandas as pd
import flask
import plotly.express as px

from ncov19_dash.utils import STATES_COORD
from ncov19_dash import config

px.set_mapbox_access_token(config.MAPBOX_ACCESS_TOKEN)


# TODO: Make Drive-thru testing center API
def get_drive_thru_testing_centers():
    try:
        drive_thru_df = pd.read_csv(config.DRIVE_THRU_URL)
        drive_thru_df["Street Address"] = \
            drive_thru_df["Street Address"].fillna("")
    except ValueError as ex:
        print(f'[ERROR] get_drive_thru_testing_center error, {ex}')
        drive_thru_df = pd.DataFrame()

    return drive_thru_df


################################################################################
def confirmed_scatter_mapbox(state="United States"):
    """Displays choroplepth map for the data. For the whole US, the map is
    divided by state.

    :return card: A dash boostrap component Card object with a dash component
示例#9
0
# coding: utf-8

# In[1]:

import plotly.express as px
import csv
from datetime import datetime
import pandas as pd
px.set_mapbox_access_token(open(".\\mapbox_token").read())

# In[7]:

data_ini = -30
data_fim = 0
data_aux = '1900-01-01 00:00:00'
strings = []

with open('C:\\Users\\rique\\Desktop\\fires2.csv') as csvfile:
    readCSV = csv.reader(csvfile, delimiter=',')
    group = 0
    for row in readCSV:
        if (row[4] == 'True'):
            row[0] = (float(row[0])**(1 / 3))
            row[1] = float(row[1])
            row[2] = float(row[2])
            group += 1
            str_date = row[5]
            data_aux = datetime.strptime(str_date, '%Y-%m-%d').date()
            row.append(0)
            row.append(group)
            strings.append(row)
示例#10
0
    def time_series_map(self, start_date, end_date, kw_list, geo):

        if __name__ == "__main__":
            pytrend = Time_Series()

        ## Initial dates
        date1 = start_date  # input start date
        date2 = end_date  # input end date

        month_list = [
            i.strftime("%Y-%m-%d")
            for i in pd.date_range(start=date1, end=date2, freq='MS')
        ]

        ## Pair months
        month_pair = list()
        for i, j in zip(month_list, month_list[1:]):
            month_pair.append(i + ' ' + j)

        ## Create and populate df
        in_df = pd.DataFrame(columns=['geoName']).set_index('geoName')

        for i in month_pair:
            self.build_payload(kw_list=kw_list, geo=geo, timeframe=i)
            df = self.interest_by_region(resolution='CITY',
                                         inc_low_vol=True,
                                         inc_geo_code=True)
            df['time'] = i
            in_df = in_df.append(df)

        if len(in_df) == 0:
            raise ValueError(
                f'not enough searches for keyword "{kw_list[0]}" in the {geo} market'
            )

        ## Append lat & lng to lists
        lat = list()
        lng = list()

        for row in range(len(in_df['coordinates'])):
            lat.append(in_df['coordinates'].iloc[row]['lat'])
            lng.append(in_df['coordinates'].iloc[row]['lng'])

        ## Create region df from lists
        city_df = pd.DataFrame([lat, lng]).T
        city_df.columns = ['lat', 'long']

        ## DF transformations
        in_df.reset_index(inplace=True)
        try:
            city_df['name'] = in_df['geoName']
        except:
            in_df['geoName'] = in_df['index']
            city_df['name'] = in_df['geoName']

        city_df[in_df.columns[2]] = in_df[in_df.columns[2]]
        city_df[in_df.columns[3]] = in_df[in_df.columns[3]]

        city_df['time'] = in_df['time']
        city_df[['start', 'finish']] = city_df['time'].str.split(' ',
                                                                 expand=True)

        ## Fetch OpenDataSoft API
        def get_city_opendata(city, country):
            tmp = 'https://public.opendatasoft.com/api/records/1.0/search/?' \
            'dataset=worldcitiespop&q=%s&sort=population&facet=country&refine.country=%s'
            cmd = tmp % (city, country)
            res = requests.get(cmd)
            dct = json.loads(res.content)
            out = dct['records'][0]['fields']
            return out

        ## Calculate city pop
        if in_df['country'].iloc[0] == 'US':
            country_opendata = 'us'
        elif in_df['country'].iloc[0] == 'GB-ENG':
            country_opendata = 'gb'
        else:
            country_opendata = in_df['country'].iloc[0].lower()

        city_dict = dict()
        for city in set(city_df['name']):
            try:
                city_dict[city] = get_city_opendata(
                    city, country_opendata)['population']
            except:
                city_dict[city] = 5000

        ## Map to city_df
        city_df['pop.'] = city_df['name'].map(city_dict)

        ## Preview DF
        city_df.replace(0, np.nan, inplace=True)
        pop_col = city_df.pop('pop.')
        city_df.insert(3, 'pop.', pop_col)

        ## Center of Map based on country
        if in_df['country'].iloc[0] == 'US':
            map_center = {'lat': 39.00, 'lon': -98.00}
            zoom = 3
        elif in_df['country'].iloc[0] == 'GB-ENG':
            map_center = {'lat': 53.0, 'lon': -1.1743}
            zoom = 5.6

        ## Plot average interest
        import plotly.express as px
        px.set_mapbox_access_token(
            'pk.eyJ1IjoiY2hlZXNldWdseSIsImEiOiJja2JqZmR5YXIwb2hoMzBycDBiNHN1MWZrIn0.RNzuuAyOAtuPcwYIZRskEQ'
        )

        fig = px.scatter_mapbox(city_df, lat = "lat", lon = "long", color = city_df[city_df.columns[5]], size = city_df['pop.'],
                        color_continuous_scale = px.colors.sequential.Blues, size_max = 40, zoom = zoom, \
                                hover_name = city_df['name'], animation_frame="start", animation_group='name' , range_color=(0,100), \
                            center = map_center)

        fig.layout.updatemenus[0].buttons[0].args[1]["frame"]["duration"] = 700
        fig.layout.updatemenus[0].buttons[0].args[1]["transition"][
            "duration"] = 700
        fig.layout.sliders[0].pad.t = 10
        fig.layout.updatemenus[0].pad.t = 10

        fig.update_layout(template="plotly_white",
                          mapbox_style="dark",
                          hovermode='closest',
                          title=f"Average Interest per {geo} City",
                          width=950,
                          height=900,
                          showlegend=False)

        fig.show()
示例#11
0
              - [email protected]
"""

#%%
cd "~/Works/Python/graphics/Plotly"

#%%
import numpy as np
import pandas as pd

pd.set_option('display.max_columns', 150)
pd.set_option('display.max_rows', 150)

#%%
import plotly.express as px
px.set_mapbox_access_token('pk.eyJ1IjoibWFybGVuYWR1ZGEiLCJhIjoiY2tjYW1kY2g0MXU5ZjJzcXA0MWN4dWIwYSJ9.ZSaNpYw_pWxdaY9gMNNTpQ')

import plotly.io as pio
pio.renderers

#%%
us_cities = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/us-cities-top-1k.csv")
us_cities = us_cities.query("State in ['New York', 'Ohio']")
us_cities.head()

#%% using Plotly Express

fig = px.line_mapbox(us_cities, lat="lat", lon="lon", color="State", zoom=3, height=500)

fig.update_layout(mapbox_style="stamen-terrain", mapbox_zoom=4, mapbox_center_lat = 41,
    margin={"r":0,"t":0,"l":0,"b":0})
示例#12
0
    def interest_by_city(self, data, geo_location):
        temp_df = data.copy()

        ## Append lat & lng to lists
        lat = list()
        lng = list()

        for row in range(len(temp_df['coordinates'])):
            lat.append(temp_df['coordinates'].iloc[row]['lat'])
            lng.append(temp_df['coordinates'].iloc[row]['lng'])

        ## Create region df from lists
        city_df = pd.DataFrame([lat, lng]).T
        city_df.columns = ['lat', 'long']

        ## Transform original DF
        temp_df.reset_index(inplace=True)
        city_df['name'] = temp_df['geoName']
        city_df[temp_df.columns[2]] = temp_df[temp_df.columns[2]]
        try:
            city_df[temp_df.columns[3]] = temp_df[temp_df.columns[3]]
        except:
            pass
        try:
            city_df[temp_df.columns[4]] = temp_df[temp_df.columns[4]]
        except:
            pass
        try:
            city_df[temp_df.columns[5]] = temp_df[temp_df.columns[5]]
        except:
            pass
        try:
            city_df[temp_df.columns[6]] = temp_df[temp_df.columns[6]]
        except:
            pass
        try:
            city_df[temp_df.columns[7]] = temp_df[temp_df.columns[7]]
        except:
            pass

        ## Fetch OpenDataSoft API
        import requests
        import json

        def get_city_opendata(city, country):
            tmp = 'https://public.opendatasoft.com/api/records/1.0/search/?' \
            'dataset=worldcitiespop&q=%s&sort=population&facet=country&refine.country=%s'
            cmd = tmp % (city, country)
            res = requests.get(cmd)
            dct = json.loads(res.content)
            out = dct['records'][0]['fields']
            return out

        ## Calculate city pop
        if temp_df['country'].iloc[0] == 'US':
            country_opendata = 'us'
        elif temp_df['country'].iloc[0] == 'GB-ENG':
            country_opendata = 'gb'
        else:
            country_opendata = temp_df['country'].iloc[0].lower()

        city_dict = dict()
        for city in set(city_df['name']):
            try:
                city_dict[city] = get_city_opendata(
                    city, country_opendata)['population']
            except:
                city_dict[city] = 5000

        ## Map to city_df
        city_df['pop.'] = city_df['name'].map(city_dict)

        ## Preview DF
        city_df.replace(0, np.nan, inplace=True)
        pop_col = city_df.pop('pop.')
        city_df.insert(3, 'pop.', pop_col)

        ## Center of Map based on country
        if temp_df['country'].iloc[0] == 'US':
            map_center = {'lat': 39.00, 'lon': -98.00}
            zoom = 3
        elif temp_df['country'].iloc[0] == 'GB-ENG':
            map_center = {'lat': 53.0, 'lon': -1.1743}
            zoom = 5.6

        ## Plot average interest
        import plotly.express as px
        px.set_mapbox_access_token(
            'pk.eyJ1IjoiY2hlZXNldWdseSIsImEiOiJja2JqZmR5YXIwb2hoMzBycDBiNHN1MWZrIn0.RNzuuAyOAtuPcwYIZRskEQ'
        )

        fig = px.scatter_mapbox(city_df, lat = "lat", lon = "long", color = city_df.columns[5], size = 'pop.',
                        color_continuous_scale = px.colors.sequential.Reds, size_max = 40, zoom = zoom, \
                                hover_name = city_df['name'], range_color=(0,100), \
                                center = map_center)
        try:
            fig2 = px.scatter_mapbox(city_df, lat = "lat", lon = "long", color = city_df.columns[6], size = 'pop.',
                            color_continuous_scale = px.colors.sequential.Greens, size_max = 40, zoom = 3, \
                                    hover_name = city_df['name'], range_color=(0, 100))
            fig.add_trace(fig2.data[0])
        except:
            pass
        try:
            fig3 = px.scatter_mapbox(city_df, lat = "lat", lon = "long", color = city_df.columns[7], size = 'pop.',
                            color_continuous_scale = px.colors.sequential.Greens, size_max = 40, zoom = 3, \
                                    hover_name = city_df['name'], range_color=(0,100))
            fig.add_trace(fig3.data[0])
        except:
            pass
        try:
            fig4 = px.scatter_mapbox(city_df, lat = "lat", lon = "long", color = city_df.columns[8], size = 'pop.',
                            color_continuous_scale = px.colors.sequential.Greens, size_max = 40, zoom = 3, \
                                    hover_name = city_df['name'], range_color=(0,100))
            fig.add_trace(fig4.data[0])
        except:
            pass
        try:
            fig5 = px.scatter_mapbox(city_df, lat = "lat", lon = "long", color = city_df.columns[9], size = 'pop.',
                            color_continuous_scale = px.colors.sequential.Greens, size_max = 40, zoom = 3, \
                                    hover_name = city_df['name'], range_color=(0,100))
            fig.add_trace(fig5.data[0])
        except:
            pass

        ## Got it but wrong color
        fig.update_layout(template="plotly_white",
                          mapbox_style="dark",
                          hovermode='closest',
                          title=f"Average Interest per {geo_location} City",
                          width=950,
                          height=900,
                          showlegend=False,
                          coloraxis_colorbar=dict(title=""))

        if len(city_df.columns[4:-1]) == 1:
            fig.show()
        elif len(city_df.columns[4:-1]) == 2:
            fig.update_layout(updatemenus=[
                dict(
                    type="buttons",
                    direction="right",
                    active=0,
                    x=0.60,
                    y=1.05,
                    buttons=list([
                        dict(label=city_df.columns[5],
                             method='update',
                             args=[{
                                 'visible': [True, False]
                             }]),
                        dict(label=city_df.columns[6],
                             method='update',
                             args=[{
                                 'visible': [False, True]
                             }]),
                    ]),
                    # fonts and border
                    bgcolor='white',
                    bordercolor='lightgrey',
                    font=dict(size=10))
            ])
            fig.show()
        elif len(city_df.columns[4:-1]) == 3:
            fig.update_layout(updatemenus=[
                dict(
                    type="buttons",
                    direction="right",
                    active=0,
                    x=0.60,
                    y=1.05,
                    buttons=list([
                        dict(label=city_df.columns[5],
                             method='update',
                             args=[{
                                 'visible': [True, False, False]
                             }]),
                        dict(label=city_df.columns[6],
                             method='update',
                             args=[{
                                 'visible': [False, True, False]
                             }]),
                        dict(label=city_df.columns[7],
                             method='update',
                             args=[{
                                 'visible': [False, False, True]
                             }]),
                    ]),
                    # fonts and border
                    bgcolor='white',
                    bordercolor='lightgrey',
                    font=dict(size=10))
            ])
            fig.show()
        elif len(city_df.columns[4:-1]) == 4:
            fig.update_layout(updatemenus=[
                dict(
                    type="buttons",
                    direction="right",
                    active=0,
                    x=0.60,
                    y=1.05,
                    buttons=list([
                        dict(label=city_df.columns[5],
                             method='restyle',
                             args=[{
                                 'visible': [True, False, False, False]
                             }]),
                        dict(label=city_df.columns[6],
                             method='update',
                             args=[{
                                 'visible': [False, True, False, False]
                             }]),
                        dict(label=city_df.columns[7],
                             method='update',
                             args=[{
                                 'visible': [False, False, True, False]
                             }]),
                        dict(label=city_df.columns[8],
                             method='update',
                             args=[{
                                 'visible': [False, False, False, True]
                             }]),
                    ]),
                    # fonts and border
                    bgcolor='white',
                    bordercolor='lightgrey',
                    font=dict(size=10))
            ])
            fig.show()
        elif len(city_df.columns[4:-1]) == 5:
            fig.update_layout(updatemenus=[
                dict(
                    type="buttons",
                    direction="right",
                    active=0,
                    x=1.00,
                    y=1.05,
                    buttons=list([
                        dict(label=city_df.columns[5],
                             method='update',
                             args=[{
                                 'visible': [True, False, False, False, False]
                             }]),
                        dict(label=city_df.columns[6],
                             method='update',
                             args=[{
                                 'visible': [False, True, False, False, False]
                             }]),
                        dict(label=city_df.columns[7],
                             method='update',
                             args=[{
                                 'visible': [False, False, True, False, False]
                             }]),
                        dict(label=city_df.columns[8],
                             method='update',
                             args=[{
                                 'visible': [False, False, False, True, False]
                             }]),
                        dict(label=city_df.columns[9],
                             method='update',
                             args=[{
                                 'visible': [False, False, False, False, True]
                             }]),
                        # fonts and border
                    ]),
                    # fonts and border
                    bgcolor='white',
                    bordercolor='lightgrey',
                    font=dict(size=10))
            ])
            fig.show()
示例#13
0
import dash
import dash_core_components as dcc
import dash_html_components as html
import dash_table
import pandas as pd
import plotly.express as px
from dash.dependencies import Input, Output

df = pd.read_csv("data/kitakyushu_hinanjo.csv", encoding="shift-jis")
# mapboxのアクセストークンを読み込む
px.set_mapbox_access_token("< your-token >")

app = dash.Dash(__name__)

app.layout = html.Div([
    html.Div(
        [
            html.H1("北九州避難所マップ", style={"textAlign": "center"}),
            # ➊ テーブルの作成
            dash_table.DataTable(
                id="kitakyushu-datatable",
                style_cell={
                    "textAlign": "center",
                    "maxWidth": "80px",
                    "whiteSpace": "normal",
                    "minWidth": "80px",
                },
                fixed_rows={
                    "headers": True,
                    "data": 0
                },
示例#14
0
excesos_velocidad = excesos_velocidad0
#excesos_velocidad = alarmas_anomalas[alarmas_anomalas["EventName"] == 'Excesos de velocidad']
excesos_velocidad["month"].unique()

coordenadas_velocidad = excesos_velocidad.groupby(
    ["longitude",
     "latitude"])["idCompany"].count().sort_values(ascending=False)
coordenadas_velocidad = coordenadas_velocidad.reset_index().rename(
    {"idCompany": "count"}, axis=1)

###################################################
# Generating the map figure
###################################################

px.set_mapbox_access_token(
    "pk.eyJ1IjoiZHM0YXRlYW00NCIsImEiOiJja2d5ZjlkdTcwMXUwMnJybmJpNWpkZzZiIn0.NxhXaQUcuSz6VbMEFdR58A"
)
fig_map = px.scatter_mapbox(coordenadas_velocidad,
                            lat="latitude",
                            lon="longitude",
                            color="count",
                            size="count",
                            color_continuous_scale=px.colors.cyclical.Edge,
                            title="Speeding Alarm Locations",
                            size_max=12,
                            zoom=4.5)

###################################################
# Generating the speeding locations map predicted
###################################################
示例#15
0
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output
import numpy as np
import pandas as pd
from datetime import datetime as dt
import plotly.express as px

px.set_mapbox_access_token(
    r'pk.eyJ1IjoiZGF2ZTcwNTUiLCJhIjoiY2s1cGw2eDE5MDJ0ZjNucW9saWxvcXNxbCJ9.M4GmLRvRQ-ehFt4G7TZNYw'
)

username_passwords = [['admin', 'password']]

# Load and process data

external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
risk_data = pd.read_pickle('risk_data.pickle')

# Build Dashboard

app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
server = app.server

# Defining Dash Core Components

placetypes = dcc.Dropdown(id='placetypes',
                          options=[{
                              'label': place_type,
                              'value': place_type
示例#16
0
def draw_observation(data, date_obj, map_region):
    """
    Draw observation map with plotly
    """

    # set mapbox token
    px.set_mapbox_access_token(CONFIG.CONFIG['MAPBOX']['token'])

    # create figures
    map_center = {
        'lat': (map_region[2] + map_region[3]) * 0.5,
        'lon': (map_region[0] + map_region[1]) * 0.5
    }
    figs = collections.OrderedDict()

    # draw precipitation
    bins = [0.1, 10, 25, 50, 100, 250, 1200]
    keys = ['0.1~10', '10~25', '25~50', '50~100', '100~250', '>=250']
    cols = [
        'lightgreen', 'yellow', 'lightskyblue', 'blue', 'magenta', 'maroon'
    ]
    cols_map = dict(zip(keys, cols))
    data['rain'] = pd.cut(data['PRE_Time_0808'], bins=bins, labels=keys)
    data['Rainfall'] = '['+data['Lon'].round(2).astype(str) + ',' + data['Lat'].round(2).astype(str) + ']: ' + \
                       data['PRE_Time_0808'].astype(str)
    data['rain_size'] = data['PRE_Time_0808'] + data['PRE_Time_0808'].mean()
    df = data[data['rain'].notna()]
    if df.shape[0] >= 2:
        figs['Rainfall'] = px.scatter_mapbox(
            df,
            lat="Lat",
            lon="Lon",
            color="rain",
            category_orders={'rain': keys},
            color_discrete_map=cols_map,
            hover_data={
                'Rainfall': True,
                'Lon': False,
                'Lat': False,
                'rain': False,
                'rain_size': False
            },
            mapbox_style='satellite-streets',
            size="rain_size",
            center=map_center,
            size_max=10,
            zoom=4,
            title='Accumulated precipitation ({})'.format(
                date_obj.strftime("%Y%m%d 08-08")),
            width=900,
            height=700)

    # draw maximum temperature
    bins = [35, 37, 40, 60]
    keys = ['35~37', '37~40', '>=40']
    cols = ['rgb(255,191,187)', 'rgb(250,89,0)', 'rgb(230,0,8)']
    cols_map = dict(zip(keys, cols))
    data['max_temp_warning'] = pd.cut(data['TEM_Max'], bins=bins, labels=keys)
    data['max_temp'] = '['+data['Lon'].round(2).astype(str) + ',' + data['Lat'].round(2).astype(str) + ']: ' + \
                       data['TEM_Max'].astype(str)
    df = data[data['max_temp_warning'].notna()]
    if df.shape[0] >= 2:
        figs['Max_temperature'] = px.scatter_mapbox(
            df,
            lat="Lat",
            lon="Lon",
            color="max_temp_warning",
            category_orders={'max_temp_warning': keys},
            color_discrete_map=cols_map,
            hover_data={
                'max_temp': True,
                'Lon': False,
                'Lat': False,
                'max_temp_warning': False,
                'TEM_Max': False
            },
            mapbox_style='satellite-streets',
            size="TEM_Max",
            center=map_center,
            size_max=10,
            zoom=4,
            title='Maximum temperature ({})'.format(
                date_obj.strftime("%Y%m%d 08-08")),
            width=900,
            height=700)

    # draw minimum temperature
    bins = [-120, -40, -30, -20, -10, 0]
    keys = ['<=-40', '-40~-30', '-30~-20', '-20~-10', '-10~0']
    cols = [
        'rgb(178,1,223)', 'rgb(8,7,249)', 'rgb(5,71,162)', 'rgb(5,109,250)',
        'rgb(111,176,248)'
    ]
    cols_map = dict(zip(keys, cols))
    data['min_temp_warning'] = pd.cut(data['TEM_Min'], bins=bins, labels=keys)
    data['min_temp'] = '['+data['Lon'].round(2).astype(str) + ',' + data['Lat'].round(2).astype(str) + ']: ' + \
                       data['TEM_Min'].astype(str)
    df = data[data['min_temp_warning'].notna()]
    if df.shape[0] >= 2:
        figs['Min_temprature'] = px.scatter_mapbox(
            df,
            lat="Lat",
            lon="Lon",
            color="min_temp_warning",
            category_orders={'min_temp_warning': keys},
            color_discrete_map=cols_map,
            hover_data={
                'min_temp': True,
                'Lon': False,
                'Lat': False,
                'min_temp_warning': False,
                'TEM_Min': False
            },
            mapbox_style='satellite-streets',
            size=-1.0 * df["TEM_Min"],
            center=map_center,
            size_max=10,
            zoom=4,
            title='Minimum temperature ({})'.format(
                date_obj.strftime("%Y%m%d 08-08")),
            width=900,
            height=700)

    # draw low visibility
    data['VIS_Min'] /= 1000.0
    bins = [0, 0.05, 0.2, 0.5, 1]
    keys = ['<=0.05', '0.05~0.2', '0.2~0.5', '0.5~1']
    cols = [
        'rgb(0,82,77)', 'rgb(0,153,160)', 'rgb(0,210,204)', 'rgb(95,255,252)'
    ]
    cols_map = dict(zip(keys, cols))
    data['min_vis_warning'] = pd.cut(data['VIS_Min'], bins=bins, labels=keys)
    data['VIS_Min_size'] = 2.0 - data["VIS_Min"]
    data['min_vis'] = '['+data['Lon'].round(2).astype(str) + ',' + data['Lat'].round(2).astype(str) + ']: ' + \
                      data['VIS_Min'].astype(str)
    df = data[data['min_vis_warning'].notna()]
    if df.shape[0] >= 2:
        figs['Low_visibility'] = px.scatter_mapbox(
            df,
            lat="Lat",
            lon="Lon",
            color="min_vis_warning",
            category_orders={'min_vis_warning': keys},
            color_discrete_map=cols_map,
            hover_data={
                'min_vis': True,
                'Lon': False,
                'Lat': False,
                'min_vis_warning': False,
                'VIS_Min_size': False
            },
            mapbox_style='satellite-streets',
            size="VIS_Min_size",
            center=map_center,
            size_max=10,
            zoom=4,
            title='Low visibility ({})'.format(
                date_obj.strftime("%Y%m%d 08-08")),
            width=900,
            height=700)

    # draw high wind
    bins = [10.8, 13.9, 17.2, 20.8, 24.5, 28.5, 32.7, 37.0, 120]
    keys = [
        '10.8~13.8', '13.9~17.1', '17.2~20.7', '20.8~24.4', '24.5~28.4',
        '28.5~32.6', '32.7~36.9', '>=37.0'
    ]
    cols = [
        'rgb(0,210,244)', 'rgb(0,125,255)', 'rgb(253,255,0)', 'rgb(247,213,0)',
        'rgb(255,141,0)', 'rgb(251,89,91)', 'rgb(255,3,0)', 'rgb(178,1,223)'
    ]
    cols_map = dict(zip(keys, cols))
    data['max_win_warning'] = pd.cut(data['WIN_S_Max'], bins=bins, labels=keys)
    data['max_win'] = '['+data['Lon'].round(2).astype(str) + ',' + data['Lat'].round(2).astype(str) + ']: ' + \
                      data['WIN_S_Max'].astype(str)
    df = data[data['max_win_warning'].notna()]
    if df.shape[0] >= 2:
        figs['High_wind'] = px.scatter_mapbox(
            df,
            lat="Lat",
            lon="Lon",
            color="max_win_warning",
            category_orders={'max_win_warning': keys},
            color_discrete_map=cols_map,
            hover_data={
                'max_win': True,
                'Lon': False,
                'Lat': False,
                'max_win_warning': False,
                'WIN_S_Max': False
            },
            mapbox_style='satellite-streets',
            size="WIN_S_Max",
            center=map_center,
            size_max=10,
            zoom=4,
            title='Maximum wind speed ({})'.format(
                date_obj.strftime("%Y%m%d 08-08")),
            width=900,
            height=700)

    return figs
示例#17
0
    dbc.CardHeader('Sunburst Graph of University Features'),
    dbc.CardBody(dcc.Graph(id='sunburst', figure=sunburst, responsive=True))
])

# heat map
heatmap = px.imshow(df1[available_indicators].corr(),
                    color_continuous_scale='RdYlBu_r')
heatmap_graph = dbc.Card([
    dbc.CardHeader('Correlation among variables'),
    dbc.CardBody(dcc.Graph(id='heatmap', figure=heatmap, responsive=True))
])

#map
# map
px.set_mapbox_access_token(
    'pk.eyJ1IjoieXV4dWFuMDgzMCIsImEiOiJja2ZjcmJoeGMxaWR1MnhycXhiejRweHk3In0.EeR8LofkaGjZqQ3itwaWyA'
)
usamap = px.scatter_mapbox(df1,
                           lat="lat",
                           lon="lng",
                           hover_name="institution",
                           animation_frame='Control',
                           color='Plan',
                           zoom=10,
                           color_discrete_sequence=px.colors.qualitative.T10)

usamap.update_layout(geo_scope='usa',
                     mapbox_zoom=3,
                     mapbox_center={
                         "lat": df1['lat'].mean(),
                         "lon": df1['lng'].mean()
示例#18
0
def app():
    px.set_mapbox_access_token("pk.eyJ1Ijoib2VuYWNoZSIsImEiOiJjazM2NWVwcmUxZnc3M2JvcXVvbjJiN2dpIn0.WZidyL9W3mlaLbM0TvAVXQ")

    # Methods to load and change data
    @st.cache()
    def load_datasets():
        """
        Loads dataset of US trial information only; this is a portion of the global trial information, with additional location information added using `geopy`. 
        
        Returns: 
        - all_us_data (pd.DataFrame): information for of all ongoing COVID19 trials in the US
        """
        # All US clinical trials
        data_df = pd.read_csv("https://media.githubusercontent.com/media/oena/bios823_final_project/master/dashboard/dashboard_data/cleaned_us_covid_studies_with_geo_092020.tsv", sep="\t")
        all_us_data = data_df.dropna()
        return all_us_data

    @st.cache()
    def load_filtering_options(all_us_data):
        """
        Loads filtering options for sidebar based on current dataset being used. 
        
        Returns:
        - filtering_options (dict): contains filter options as keys and available choices as values. 
        """
        filter_options = {}

        # states represented
        states_list = list(all_us_data["Location_City_or_State"].unique())
        states_list.sort()
        states_list.insert(0, "All available states")
        filter_options["by_state"] = states_list

        # Phase
        phase_list = list(all_us_data["Phases"].unique())
        phase_list.sort()
        phase_list.insert(0, "All phases")
        filter_options["by_phase"] = phase_list

        # interventions represented
        intervention_type_list = list(all_us_data["Intervention Type"].unique())
        intervention_type_list.sort()
        intervention_type_list.insert(0, "All available interventions")
        filter_options["by_intervention_type"] = intervention_type_list

        # drugs represented
        drug_list = [i.split(": ")[1] for i in list(all_us_data["Interventions"].unique()) if i.split(": ")[0] in ["DRUG", "BIOLOGICAL"]]
        drug_list.sort()
        drug_list.insert(0, "All available drugs & biologics")
        filter_options["by_drug"] = drug_list

        return filter_options

    def filter_dataset(all_us_data,
                           drug_selection,
                           map_display,
                       output_type):
        """
        Filters dataset of US trials by choices selected
        
        Parameters:
        - all_us_data (pd.DataFrame): information for of all ongoing COVID19 trials in the US (possibly filtered)
        - drug_selection (str): specific drug or biologic selected by user
        - map_display (str): user selection for what information to display on US map
        - output_type (str; must be "data" or "count"): what type of output to return 
        
        Returns: 
        - 
        """
        # Filter if needed
        if drug_selection != "All available drugs & biologics":
            all_us_data = all_us_data[all_us_data["Drug Type"] == drug_selection]
            print(all_us_data.shape)

        if output_type == "data":
            return all_us_data
        else:
            # Count of clinical trials by institution, for map
            if map_display == "Number of ongoing trials":
                out_df = pd.DataFrame(all_us_data.groupby(["Location_Institution", "lat", "lon"])["NCT Number"].nunique())
                out_df.reset_index(inplace=True)
                out_df.columns = ['Institution', 'Latitude', 'Longitude', "Number of ongoing trials"]
            elif map_display == "Number of interventions":
                out_df = pd.DataFrame(all_us_data.groupby(["Location_Institution", "lat", "lon"])["Interventions"].nunique())
                out_df.reset_index(inplace=True)
                out_df.columns = ['Institution', 'Latitude', 'Longitude', "Number of interventions"]
            elif map_display == "Trial enrollment status":
                out_df = pd.DataFrame(all_us_data.groupby(["Location_Institution", "lat", "lon", "Enrollment"])["Status"].agg(["unique"]))
                out_df.reset_index(inplace=True)
                out_df.columns = ['Institution', 'Latitude', 'Longitude', "Enrollment", "Trial enrollment status"]
                out_df["Trial enrollment status"] = [i[0] for i in out_df["Trial enrollment status"].values]
            return out_df

    def download_link(object_to_download, download_filename, download_link_text):
        """
        Generates a link to download the given object_to_download.
        
        Parameters:
        - object_to_download (str, pd.DataFrame):  The object to be downloaded.
        - download_filename (str): filename and extension of file. e.g. mydata.csv, some_txt_output.txt
        - download_link_text (str): Text to display for download link.

        Returns:
        - A download link for object specified. 
        """
        if isinstance(object_to_download,pd.DataFrame):
            object_to_download = object_to_download.to_csv(index=False)

        # some strings <-> bytes conversions necessary here
        b64 = base64.b64encode(object_to_download.encode()).decode()

        return f'<a href="data:file/txt;base64,{b64}" download="{download_filename}">{download_link_text}</a>'

    # Load data initially
    data_load_state = st.text("Loading data...")
    us_study_data = load_datasets()
    filter_options = load_filtering_options(us_study_data)
    data_load_state.text("")

    # Page title
    st.title("What kinds of COVID-19 trials are happening in the US?")
    st.header("Explore ongoing clinical trial efforts in US")

    with st.beta_expander("Click here to expand more details about this page"):
        st.markdown("This page displays some practical information about trials currently happening in the United States. Feel free to filter information on location, trial phase, and other features relevant to you; when you're done (and if you'd like to follow up on any trials), you can download your results to csv.")
        st.subheader("Some potential caveats to note:")
        st.markdown("- Adding geospatial data to some study locations was not possible in an automated fashion, "
                    "so they are not included in the plot below. \n "
                    "- Geospatial data was added automatically by institute (mostly hospital) location name using `geopy`, "
                    "so it may not be accurate for all locations.")

    # Sidebar to switch between study locations and latest covid rates
    st.sidebar.subheader("Filter trial information:")

    state_value = st.sidebar.selectbox("Filter trials by state:",
                                       filter_options["by_state"])
    if state_value != "All available states":
        us_study_data = us_study_data[us_study_data["Location_City_or_State"] == state_value]
        filter_options = load_filtering_options(us_study_data)

    phase_value = st.sidebar.selectbox("Filter trials by phase:",
                                       filter_options["by_phase"])
    if phase_value != "All phases":
        us_study_data = us_study_data[us_study_data["Phases"] == phase_value]
        filter_options = load_filtering_options(us_study_data)

    intervention_type = st.sidebar.selectbox("Find trials by intervention type:",
                                             filter_options["by_intervention_type"])
    if intervention_type != "All available interventions":
        us_study_data = us_study_data[us_study_data["Intervention Type"] == intervention_type]
        filter_options = load_filtering_options(us_study_data)

    intervention = st.sidebar.selectbox("Find trials by drugs/biologics being studied: ",
                                        filter_options["by_drug"])
    st.sidebar.write("Note. A biologic (aka biological) is a drug made from living organisms (or components thereof).")

    show_data_table = st.sidebar.checkbox("Show study information fulfilling above criteria")


    # Main plot

    with st.beta_container():
        # Map title
        st.subheader("Count of ongoing COVID clinical trials by institute")

        # Map layout
        c1, c2 = st.beta_columns([8,2])

        # Select box for map -- changes displayed colors on map
        c2.markdown("**Change map display:**")
        radio_display = c2.radio("Choose one of:",
                        options=["Number of ongoing trials",
                                 "Number of interventions",
                                 "Trial enrollment status"])

        # Plot map
        filtered_count_df = filter_dataset(us_study_data,
                      intervention,
                      radio_display,
                       "count")
        # Color palette type needs to change depending on what's displayed
        if radio_display == "Trial enrollment status":
            count_map = px.scatter_mapbox(filtered_count_df,
                            lat="Latitude",
                            lon="Longitude",
                            color=radio_display,
                            size="Enrollment",
                            hover_name="Institution",
                            mapbox_style="light",
                            center={"lat": 38, "lon": -95},
                            zoom=2)
        else:
            count_map = px.scatter_mapbox(filtered_count_df,
                                    lat="Latitude",
                                    lon="Longitude",
                                    color=radio_display,
                                    size=radio_display,
                                    #color_discrete_sequence=color_palette,
                                    hover_name="Institution",
                                    mapbox_style="light",
                                    center={"lat": 38, "lon": -95},
                                    zoom=2)
        count_map.update_layout(width=1100, height=600)
        c1.plotly_chart(count_map, use_container_width=True)

    # Data table of studies
    if show_data_table:
        with st.beta_container():
            st.subheader("Summary table of key trial information")
            cols_to_keep = ["NCT Number",
                            "Title",
                            "Phases",
                            "Status",
                            "Enrollment",
                            "Location_City_or_State",
                            "Location_Institution",
                            "Address",
                            "URL"]
            filtered_data = filter_dataset(us_study_data,
                      intervention,
                      radio_display,
                      "data")
            filtered_data_display = filtered_data[cols_to_keep].drop_duplicates()
            st.write(filtered_data_display)
            if st.button('Download Dataframe as CSV'):
                tmp_download_link = download_link(filtered_data_display, 'covid_trials_information.csv', 'Click here to download your data!')
                st.markdown(tmp_download_link, unsafe_allow_html=True)
示例#19
0
"""

import dash
import dash_core_components as dcc
import dash_html_components as html
import pandas as pd
import plotly.graph_objs as go
from plotly.subplots import make_subplots
#from dash.dependencies import Input, Output
import plotly.express as px
#import base64
import json
#from textwrap import dedent as d

px.set_mapbox_access_token(
    'pk.eyJ1IjoiZXdpbGxpYW1zMjAyMCIsImEiOiJja2FpdTIxOXMwM2wzMnFtbmVmb3IzZDJ6In0.TVsQ-iu8bN4PQLkBCr6tQQ'
)

external_stylesheets = [
    'https://codepen.io/chriddyp/pen/bWLwgP.css',
    'https://raw.githubusercontent.com/elimywilliams/sc_covid19/master/header2.css',
    'https://github.com/plotly/dash-app-stylesheets/blob/master/dash-oil-and-gas.css'
]

#from PIL import Image
#image_filename = 'http://www.southerncrossinc.com/wp-content/uploads/2019/02/SC-logo-website.png'
#image = Image.open(image_filename)
#image.show()

#from PIL import Image
#import requests
示例#20
0
        conn = cx_Oracle.connect(user=config.DATABASE_5['user'],
                                 password=config.DATABASE_5['password'],
                                 dsn=dsn_tns)
    elif dbname == None:
        raise ValueError("Couldn't not find DB with given name")

    return conn


# Get some example data (a list of dicts with {name: country name, latlng: position tuple, ...})
marker_data = requests.get(
    "https://gist.githubusercontent.com/erdem/8c7d26765831d0f9a8c62f02782ae00d/raw"
    "/248037cd701af0a4957cce340dabb0fd04e38f4c/countries.json").json()

px.set_mapbox_access_token(
    "pk.eyJ1Ijoibml0aW5rdW1hcjEyMzQiLCJhIjoiY2tkaWQxdjBxMDNzMDJ6bzBnNDB4aTkyZyJ9.9NmlWUlLadztPucWTBSRzA"
)


def fetch_data(q, environ):
    conn = connect_db(environ)
    cur = conn.cursor()
    cur.execute(
        '''alter session set nls_date_format = 'YYYY/MM/DD HH24:MI:SS' ''')
    result = pd.read_sql(sql=q, con=conn)
    cur.close()
    conn.close()
    return result


def get_results(environ):
示例#21
0
import os
import pandas as pd 
import plotly.graph_objs as go 
import cufflinks
import dash_core_components as dcc 
import dash_html_components as html 
import dash_bootstrap_components as dbc 
from dash.dependencies import Input, Output
import plotly.express as px
import colorcet as cl

px.set_mapbox_access_token(os.environ.get('TOKEN'))

af = pd.read_csv('data/africa.csv')
df = pd.read_csv('data/latest.csv')

df.rename(columns={
    'Country_Region':'Country',
    'Long_': 'Long',
    'Case_Fatality_Ratio': 'C.F.R'
}, inplace=True)

df.drop([
    'FIPS','Admin2','Combined_Key','Province_State'
], axis=1, inplace=True)

y = list(af['Country'])
df = df[df['Country'].isin(y)]


small = df.nsmallest(10, columns='Recovered')
示例#22
0
import pandas as pd
import plotly.express as px

from apis.utils.job_search.utils import params

from config import Config
px.set_mapbox_access_token(Config.mapbox_token)


def time_series(df: pd.DataFrame, color: str):
    df = df.sort_values('Date', ascending=True).reset_index(drop=True)
    if color == 'All':
        df['count'] = df.index
        return px.line(df, x='Date', y='count')
    df['count'] = df.assign(count=1).groupby(color)['count'].cumsum()
    df = df[~df[color].isna()]
    return px.line(df, x='Date', y='count', color=color, template='plotly_dark',
                   labels={'count': 'Number of Applications'})


def map_figure(df: pd.DataFrame, color: str):
    df = df[~df['Latitude'].isna() & ~df['Longitude'].isna()]
    return px.scatter_mapbox(df, lat='Latitude', lon='Longitude', color=color)


class PlotCallbacks(object):
    @staticmethod
    def figures(df, color):
        df = pd.read_json(df)
        if df.shape[0] == 0:
            return params['empty-figure'], params['empty-figure']
示例#23
0
def parse_config(config_path: str) -> dict:
    with open(config_path) as conf:
        return json.load(conf)


if __name__ == "__main__":
    config = parse_config("config.json")

    traffic_cameras = pandas.read_json(config["api_base"].format(
        config["app_id"], config["api_format"]))

    traffic_cameras["Geometry"] = [
        value["WGS84"] for _, value in traffic_cameras["Geometry"].items()
    ]

    # Refer https://geopandas.readthedocs.io/en/latest/gallery/create_geopandas_from_pandas.html
    traffic_cameras["Geometry"] = traffic_cameras["Geometry"].apply(wkt.loads)

    geo_df = geopandas.GeoDataFrame(traffic_cameras, geometry="Geometry")

    plotlyex.set_mapbox_access_token(config["mapbox_token"])

    fig = plotlyex.scatter_mapbox(geo_df,
                                  lat=geo_df.geometry.y,
                                  lon=geo_df.geometry.x,
                                  hover_name="CameraImageUrl",
                                  zoom=1)

    fig.show()
示例#24
0
STATE = 'START'
data = pd.read_csv("https://www.fire.ca.gov/imapdata/mapdataall.csv")
table_data = pd.DataFrame()
data=data[data['incident_acres_burned'].notnull()] # Dropping Nulls
data=data[data['incident_dateonly_extinguished'].notnull()] # Dropping Nulls
data['date'] = pd.to_datetime(data['incident_dateonly_extinguished'])
data['date_start'] = pd.to_datetime(data['incident_dateonly_created'])
data = data[data.date >  datetime.strptime('2010-01-01', '%Y-%m-%d')] # Dropping wrong/invalid dates

min_date = min(data.date)
max_date = max(data.date)


# Set Mapbox Access Token
if path.exists('src/.mapbox_token'):
    px.set_mapbox_access_token(open("src/.mapbox_token").read())
elif 'MAPBOX_TOKEN' in environ.keys():
    px.set_mapbox_access_token(environ['MAPBOX_TOKEN'])
else:
    print("TOKEN not found in env or local dir")


# Create App
app = dash.Dash(__name__, suppress_callback_exceptions=True)


# Navbar
navbar = html.Div(id='navbar', className='topnav' ,children=[
        html.A('Home', id='home-page-nav', className="home-page", href='home'),
        html.A('California Incident Map', id='cali-map-nav', className="non-home", href='app1'),
        html.A('County Incident Map', id='county-map-nav', className="non-home", href='app2'), 
示例#25
0
import plotly.express as px

px.set_mapbox_access_token(
    "pk.eyJ1IjoiZXJhbmdyaW4iLCJhIjoiY2thanE2Mnc2MGN6aDJycGV0MHl4MXI3bCJ9.hAQ0SAX1JGgeM_9lBZtC2g"
)
df = px.data.carshare()
print(df)
fig = px.scatter_mapbox(df,
                        lat="centroid_lat",
                        lon="centroid_lon",
                        color="peak_hour",
                        size="car_hours",
                        color_continuous_scale=px.colors.cyclical.IceFire,
                        size_max=15,
                        zoom=10)
fig.show()
示例#26
0
    st.altair_chart(c3, use_container_width=True)
    with st.beta_expander("See explanation"):
        st.markdown("""
         Notice that in US, the confirmed cases is extremly high which need us to make more attention to this.Though the death cases is not very high, the active cases is still a lot which means it is hard to fully recovered.
         """)

if session == "Map":
    st.sidebar.subheader("Pick A Map")
    mapplots = st.sidebar.selectbox("Maps",
                                    ["Daily updated", "Spread of COVID-19"])
    current_time = datetime.now() - timedelta(days=1)
    if current_time.hour < 13:
        current_time = datetime.now() - timedelta(days=2)
    today = current_time.strftime("%m-%d-%Y")
    px.set_mapbox_access_token(
        'pk.eyJ1IjoibW9sdW9zaXJpdXMiLCJhIjoiY2toOTlvenZrMGEzNzJwcjFzbjNuaG42eSJ9.glsH-yMcr1tmNxlzHDsCpQ'
    )

    ##spread animated
    if mapplots == "Spread of COVID-19":
        ##data cleaning and merge
        confirmed_global = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_confirmed_global.csv'
        death_global = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_deaths_global.csv'
        recover_global = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_covid19_recovered_global.csv'
        confirmed = pd.read_csv(confirmed_global)
        death = pd.read_csv(death_global)
        recover = pd.read_csv(recover_global)
        dates = confirmed.columns[4:]
        confirmed_df = confirmed.melt(
            id_vars=['Province/State', 'Country/Region', 'Lat', 'Long'],
            value_vars=dates,
示例#27
0
def set_display_children(
    location_selected_feature,
    location_selected_option,
    health_selected_feature,
    health_selected_option,
):
    token = os.getenv(
        "pk.eyJ1IjoibXN1YXJlejkiLCJhIjoiY2ttZ3F1cjZ0MDAxMjJubW5tN2RsYzI2bCJ9.l7Ht-cO4Owt7vgiAY3lwsQ"
    )
    px.set_mapbox_access_token(
        "pk.eyJ1IjoibXN1YXJlejkiLCJhIjoiY2ttZ3F1cjZ0MDAxMjJubW5tN2RsYzI2bCJ9.l7Ht-cO4Owt7vgiAY3lwsQ"
    )

    dff = df[df[location_selected_feature] == location_selected_option]
    avg_lat = mean(dff["Latitude"])
    avg_lon = mean(dff["Longitude"])
    if location_selected_feature == 'City':
        zoom_level = 13
    if location_selected_feature == 'Community':
        zoom_level = 15

    if (health_selected_option == [] or len(
            dff[dff[health_selected_feature].isin(health_selected_option)])
            == 0):
        fig = px.scatter_mapbox(
            data_frame=dff,  # [df['Clinic Access']==value],
            lat=dff["Latitude"],
            lon=dff["Longitude"],
            zoom=zoom_level,
            hover_data={
                "Water Access": False,
                "Clinic Access": False,
                "Floor Condition": False,
                "Roof Condition": False,
                "Latrine or Bathroom Access": False,
                "Longitude": False,
                "Latitude": False,
            },
        )
        fig.update_traces(marker_opacity=0)

    else:
        dff = dff[dff[health_selected_feature].isin(health_selected_option)]
        lat_val = dff["Latitude"]
        lon_val = dff["Longitude"]
        fig = px.scatter_mapbox(
            data_frame=dff,  # [df['Clinic Access']==value],
            lat=dff["Latitude"],
            lon=dff["Longitude"],
            color=dff[health_selected_feature],
            color_discrete_map=color_map[health_selected_feature],
            hover_name="Community",
            hover_data={
                "Water Access": True,
                "Clinic Access": True,
                "Floor Condition": True,
                "Roof Condition": True,
                "Latrine or Bathroom Access": True,
                "Longitude": False,
                "Latitude": False,
            },
            zoom=zoom_level,
            opacity=0.8,
            category_orders={
                health_selected_feature:
                all_health_options[health_selected_feature]
            },
            custom_data=[
                "Community",
                "Water Access",
                "Clinic Access",
                "Floor Condition",
                "Roof Condition",
                "Latrine or Bathroom Access",
            ],
        )
        # fig.update_traces(
        #     hoverinfo="lon",
        #     hovertemplate="<span style='font-size:20px'><b>%{customdata[0]}</b> </span><br> <br> <b>Water Access:</b> %{customdata[1]}<br> <b>Clinic Access:</b> %{customdata[2]}<br> <b>Floor Condition:</b> %{customdata[3]}<br> <b>Roof Condition:</b> %{customdata[4]}<br> <b>Latrine or Bathroom Access:</b> %{customdata[5]}",
        # )
        fig.update_traces(marker_size=15)  # ids='123test',
        # fig.add_trace(go.Scattermapbox(
        #     lat=lat_val,
        #     lon=lon_val,
        #     mode='markers',
        #     marker=go.scattermapbox.Marker(color='grey',
        #         #below='123test',
        #         allowoverlap=False,
        #         size=18,
        #         opacity=0.4
        #         ),
        # hoverinfo='none',
        # #coloraxis_showscale=False
        # ))
        fig.update_layout(hoverlabel=dict(
            bgcolor="white", font_size=16, font_family="Roboto"))
        fig.update_traces(  #ids='123test',
            marker_size=15)
        # fig.add_trace(go.Scattermapbox(
        #     lat=lat_val,
        #     lon=lon_val,
        #     mode='markers',
        #     marker=go.scattermapbox.Marker(color='grey',
        #         #below='123test',
        #         allowoverlap=False,
        #         size=18,
        #         opacity=0.4
        #         ),
        # hoverinfo='none',
        # #coloraxis_showscale=False
        # ))

    fig.update_layout(
        autosize=True,
        # margins=dict{l:0},
        title=
        "<b>Dominican Republic Health Data by Household</b><br>(Hover over map for details)",
        title_font_color='black',
        title_font_family="Roboto",
        font_family="Roboto",
        geo_scope="world",
        geo=dict(
            projection_scale=1000000,  # this is kind of like zoom
            center=dict(lat=avg_lat, lon=avg_lon),
        ),  # this will center on the point
    )

    fig.update_layout(
        mapbox_style="mapbox://styles/msuarez9/ckmp4rt7e0qf517o1md18w9d1")
    fig.update_layout(
        legend_title=dict(font=dict(family="Roboto", size=20, color="black")),
        legend=dict(
            font_family="Roboto",
            font=dict(family="Roboto", size=18, color="black"),
            orientation="h",
            yanchor="bottom",
            xanchor="left",
            y=-0.09,
            # width = '90%'
            # x=0
        ),
    )
    #fig.update_layout(geo=dict(bgcolor= '#f8f7f6'))
    fig.update_layout({
        'plot_bgcolor': 'rgba(0, 0, 0, 0)',
        'paper_bgcolor': 'rgba(0, 0, 0, 0)'
    })

    return fig
示例#28
0
def xception():
    if request.method == "POST":
        instaid = request.form["instaid"]
    
        #scraping images with beautifulsoup
        url = "https://www.instagram.com/" + instaid
        browser = Browser('chrome')
        browser.visit(url)
        sleep(1)
        bs = BeautifulSoup(browser.html, 'html.parser')

        #finds all the images in website and puts url in df
        images = bs.find_all('img', {'src':re.compile('.jpg')})
        image_urls = []
        for image in images: 
            image_urls.append(str(image['src']))
        image_df = pd.DataFrame({"image":image_urls})
        
        import numpy as np
        import tensorflow as tf

        from tensorflow.keras.preprocessing import image
        from tensorflow.keras.applications.xception import (
            Xception, preprocess_input, decode_predictions)

        from PIL import Image
        import requests
        from io import BytesIO


        model = Xception(
            include_top=True,
            weights='imagenet')
        
        prds = []
        pcts = []
        for i in image_urls:
            url = i
            response = requests.get(url)
            img = Image.open(BytesIO(response.content))
            img = img.resize((299, 299), Image.NEAREST)
            x = image.img_to_array(img)
            x = np.expand_dims(x, axis=0)
            x = preprocess_input(x)
            predictions = model.predict(x)
            prds.append(decode_predictions(predictions, top=1)[0][0][1])
            pcts.append(decode_predictions(predictions, top=1)[0][0][2])
#             cnns.append(decode_predictions(predictions, top=3)[0])
        image_df["predictions"] = prds
        image_df["%"] = pcts
        image_df.sort_values("%",ascending = False,inplace = True)
        image_df.reset_index(drop=True,inplace=True)
        
#         from IPython.display import Image
#         from IPython.core.display import HTML
        
#         def path_to_image_html(path):
#             return '<img src="'+ path + '" width="300" >'
        
#         print("Server received request for 'About' page...")
#         return (image_df.to_html(escape=False ,formatters=dict(image=path_to_image_html)))
    
        gkey = "AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
        depart =  request.form["depart"]
        target_radius = 1000
        
        records = pd.DataFrame()
        target_list = image_df.drop_duplicates(subset="predictions", keep="first")["predictions"]
        targets = str(depart).split(",")
        for target in targets:
                # Build the endpoint URL
            target_url = (f'https://maps.googleapis.com/maps/api/geocode/json?address={target}&key={gkey}')
            geo_data = requests.get(target_url).json()


            target_adr = geo_data["results"][0]["formatted_address"]
            lat = geo_data["results"][0]["geometry"]["location"]["lat"]
            lng = geo_data["results"][0]["geometry"]["location"]["lng"]

            target_coordinates = str(lat) + "," + str(lng)
            
            
#             target_radius = 800
            target_type = ""

            # set up a parameters dictionary

            for target_search in target_list:
                params = {
                    "location": target_coordinates,
                    "keyword": target_search,
                    "radius": target_radius,
                    "type": target_type,
                    "key": gkey
                }

                # base url
                base_url = "https://maps.googleapis.com/maps/api/place/nearbysearch/json"

                # run a request using our params dictionary
                response = requests.get(base_url, params=params)
                places_data = response.json()

                n=0
                # while int(n) > len(places_data):
                while int(n) < len(places_data["results"]):
                    try:
                        price=places_data["results"][int(n)]["price_level"]
                    except KeyError:
                        price = "NA"
                    try:
                        link=places_data["results"][int(n)]["place_id"]
                    except KeyError:
                        link = "NA"
                    try:
                        score = places_data["results"][int(n)]["rating"]
                    except KeyError:
                        score = "NA"
                    try:
                        reviews = places_data["results"][int(n)]["user_ratings_total"]
                    except KeyError:
                        reviews = "NA"
                    try:
                        lat = places_data["results"][int(n)]["geometry"]["location"]["lat"]
                        lon = places_data["results"][int(n)]["geometry"]["location"]["lng"]
#                         dist = pd.read_html(f"http://boulter.com/gps/distance/?from={target_coordinates}&to={poi_coord}&units=k")
#                         distance = float(str(dist[1][1][1]).split(" ")[0])
                    except IndexError or TimeoutError:
                        distance = "NA"
#                         drive_url = f"https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={target_coordinates}&destinations={poi_coord}&key=AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
#                         drive_res = requests.get(drive_url).json()
#                         distance = drive_res["rows"][0]["elements"][0]["distance"]["value"]/1000
#                         duration= int(drive_res["rows"][0]["elements"][0]["duration"]["value"]/60)
#                     except KeyError:
#                         distance = "NA"
#                         drive_dur = "NA"
                    
#                     try:
#                         walk_url = f"https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={target_coordinates}&destinations={poi_coord}&mode=walking&key=AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
#                         walk_res = requests.get(walk_url).json()
#                         distance = walk_res["rows"][0]["elements"][0]["distance"]["value"]/1000
#                         walk_dur = int(walk_res["rows"][0]["elements"][0]["duration"]["value"]/60)
#                     except KeyError:
#                         walk_dur = "NA"
                    
#                     try:
#                         transit_url = f"https://maps.googleapis.com/maps/api/distancematrix/json?units=imperial&origins={target_coordinates}&destinations={poi_coord}&mode=transit&key=AIzaSyA-Rjp6nOeJp6815Xt1Kkuxc5XKMiKl_yA"
#                         transit_res = requests.get(transit_url).json()
#                         transit_dur = int(transit_res["rows"][0]["elements"][0]["duration"]["value"]/60)
#                     except KeyError:
#                         transit_dur = "NA"
                    
                    content = pd.DataFrame ({"depart":target_adr,"poi":target_search,
                                            "name":[places_data["results"][int(n)]["name"]],
                                            "score":score,
                                             "reviews":reviews,
                                             "price":price,
                                             "link":link,
                                            "address":[places_data["results"][int(n)]["vicinity"]],
                                           "lat":lat, "lon":lon})
#                                             "drive":duration,
#                                             "public":transit_dur,
#                                             "walk":walk_dur})
                    records = records.append(content)
                    n+=1
        records.reset_index(drop = True,inplace = True)
#         records["link"]=records["link"].apply(lambda x: '<a href="https://www.google.com/maps/place/?q=place_id:{0}">link</a>'.format(x))
#         return (records.to_html(escape=False))
        records["size"] = 10
        px.set_mapbox_access_token("pk.eyJ1IjoidGl2bWU3IiwiYSI6ImNrMWEwZDVtNDI4Zm4zYm1vY3o3Z25zejEifQ._yTPkj3nXTzor72zIevLCQ")
        fig = px.scatter_mapbox(records, lat="lat", lon="lon", color = "poi", size = "size", hover_name="name",zoom = 13)
        fig.update_layout(autosize=True,width=1500,height=750)
        #                           ,margin=go.layout.Margin(l=50,r=50,b=100,t=100,pad=4))

        return(py.offline.plot(fig,output_type="div"))

    return render_template("xception.html")
示例#29
0
import dash_bootstrap_components as dbc
import dash_html_components as html
import dash_core_components as dcc
import dash

# For Plotly Graphs and Charts
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd

# Style for Scatterfig (Crime Pie Chart)
style = "mapbox://styles/kshizi/ckkgih80b043k17p0krxnbssu"
px.set_mapbox_access_token(open("data/.mapbox_token").read())

# Data Frame
df = pd.read_csv('data/Raleigh_Police_Incidents.csv')

# Data Wrangling
list_in_dist = df['district']
count = list_in_dist.value_counts(dropna=True)
count_tolist = list(count)
index_tolist = count.index.tolist()

# Wrangled Data Passed into Pie Chart
labels = index_tolist
values = count_tolist

# Crime Pie Chart Figure
fig = go.Figure(data=[
    go.Pie(labels=labels,
           values=values,
示例#30
0
### Dash App Imports
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.dependencies import Input, Output, State

### Mapping Imports
import plotly.graph_objects as go
import plotly.express as px

### MAPBOX CREDENTIALS ###
# with open('./credentials.json', 'r') as f:
#     credentials = json.load(f)
# MAPBOX_TOKEN = credentials['token']
px.set_mapbox_access_token('pk.eyJ1IjoidHFyYWhtYW4iLCJhIjoiY2l0bmh2dnU2MDRvZzJ6bDQ4OWFheXU3NCJ9.bY7m05QGUHV1jQvwwHX-FA')

mapbox_access_token = 'pk.eyJ1IjoidHFyYWhtYW4iLCJhIjoiY2l0bmh2dnU2MDRvZzJ6bDQ4OWFheXU3NCJ9.bY7m05QGUHV1jQvwwHX-FA'

#mapbox_access_token = 'pk.eyJ1IjoiamFja2x1byIsImEiOiJjajNlcnh3MzEwMHZtMzNueGw3NWw5ZXF5In0.fk8k06T96Ml9CLGgKmk81w'

# Reading in the data
isabela = pd.read_csv("isabela_duck_deployment.csv")

### PREPROCESSING ###

# Getting the first duck_id from path
isabela['duck_id'] = isabela['path'].apply(lambda x: x[:12])

# Creating a list of unique duck_id's
duck_list = isabela['duck_id'].unique().tolist()