示例#1
0
def create_streamline(x,
                      y,
                      u,
                      v,
                      density=1,
                      angle=math.pi / 9,
                      arrow_scale=.09,
                      **kwargs):
    """
    Returns data for a streamline plot.

    :param (list|ndarray) x: 1 dimensional, evenly spaced list or array
    :param (list|ndarray) y: 1 dimensional, evenly spaced list or array
    :param (ndarray) u: 2 dimensional array
    :param (ndarray) v: 2 dimensional array
    :param (float|int) density: controls the density of streamlines in
        plot. This is multiplied by 30 to scale similiarly to other
        available streamline functions such as matplotlib.
        Default = 1
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (float in [0,1]) arrow_scale: value to scale length of arrowhead
        Default = .09
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of streamline figure.

    Example 1: Plot simple streamline and increase arrow size
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_streamline

    import numpy as np
    import math

    # Add data
    x = np.linspace(-3, 3, 100)
    y = np.linspace(-3, 3, 100)
    Y, X = np.meshgrid(x, y)
    u = -1 - X**2 + Y
    v = 1 + X - Y**2
    u = u.T  # Transpose
    v = v.T  # Transpose

    # Create streamline
    fig = create_streamline(x, y, u, v, arrow_scale=.1)

    # Plot
    py.plot(fig, filename='streamline')
    ```

    Example 2: from nbviewer.ipython.org/github/barbagroup/AeroPython
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_streamline

    import numpy as np
    import math

    # Add data
    N = 50
    x_start, x_end = -2.0, 2.0
    y_start, y_end = -1.0, 1.0
    x = np.linspace(x_start, x_end, N)
    y = np.linspace(y_start, y_end, N)
    X, Y = np.meshgrid(x, y)
    ss = 5.0
    x_s, y_s = -1.0, 0.0

    # Compute the velocity field on the mesh grid
    u_s = ss/(2*np.pi) * (X-x_s)/((X-x_s)**2 + (Y-y_s)**2)
    v_s = ss/(2*np.pi) * (Y-y_s)/((X-x_s)**2 + (Y-y_s)**2)

    # Create streamline
    fig = create_streamline(x, y, u_s, v_s, density=2, name='streamline')

    # Add source point
    point = Scatter(x=[x_s], y=[y_s], mode='markers',
                    marker=Marker(size=14), name='source point')

    # Plot
    fig['data'].append(point)
    py.plot(fig, filename='streamline')
    ```
    """
    utils.validate_equal_length(x, y)
    utils.validate_equal_length(u, v)
    validate_streamline(x, y)
    utils.validate_positive_scalars(density=density, arrow_scale=arrow_scale)

    streamline_x, streamline_y = _Streamline(x, y, u, v, density, angle,
                                             arrow_scale).sum_streamlines()
    arrow_x, arrow_y = _Streamline(x, y, u, v, density, angle,
                                   arrow_scale).get_streamline_arrows()

    streamline = graph_objs.Scatter(x=streamline_x + arrow_x,
                                    y=streamline_y + arrow_y,
                                    mode='lines',
                                    **kwargs)

    data = [streamline]
    layout = graph_objs.Layout(hovermode='closest')

    return graph_objs.Figure(data=data, layout=layout)
示例#2
0
def create_quiver(x,
                  y,
                  u,
                  v,
                  scale=0.1,
                  arrow_scale=0.3,
                  angle=math.pi / 9,
                  scaleratio=None,
                  **kwargs):
    """
    Returns data for a quiver plot.

    :param (list|ndarray) x: x coordinates of the arrow locations
    :param (list|ndarray) y: y coordinates of the arrow locations
    :param (list|ndarray) u: x components of the arrow vectors
    :param (list|ndarray) v: y components of the arrow vectors
    :param (float in [0,1]) scale: scales size of the arrows(ideally to
        avoid overlap). Default = .1
    :param (float in [0,1]) arrow_scale: value multiplied to length of barb
        to get length of arrowhead. Default = .3
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (positive float) scaleratio: the ratio between the scale of the y-axis
        and the scale of the x-axis (scale_y / scale_x). Default = None, the
        scale ratio is not fixed.
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of quiver figure.

    Example 1: Trivial Quiver
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import math

    # 1 Arrow from (0,0) to (1,1)
    fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)

    py.plot(fig, filename='quiver')
    ```

    Example 2: Quiver plot using meshgrid
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import numpy as np
    import math

    # Add data
    x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
    u = np.cos(x)*y
    v = np.sin(x)*y

    #Create quiver
    fig = create_quiver(x, y, u, v)

    # Plot
    py.plot(fig, filename='quiver')
    ```

    Example 3: Styling the quiver plot
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver
    import numpy as np
    import math

    # Add data
    x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
                       np.arange(-math.pi, math.pi, .5))
    u = np.cos(x)*y
    v = np.sin(x)*y

    # Create quiver
    fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
                        name='Wind Velocity', line=dict(width=1))

    # Add title to layout
    fig['layout'].update(title='Quiver Plot')

    # Plot
    py.plot(fig, filename='quiver')
    ```

    Example 4: Forcing a fix scale ratio to maintain the arrow length
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import numpy as np

    # Add data
    x,y = np.meshgrid(np.arange(0.5, 3.5, .5), np.arange(0.5, 4.5, .5))
    u = x
    v = y
    angle = np.arctan(v / u)
    norm = 0.25
    u = norm * np.cos(angle)
    v = norm * np.sin(angle)

    # Create quiver with a fix scale ratio
    fig = create_quiver(x, y, u, v, scale = 1, scaleratio = 0.5)

    # Plot
    py.plot(fig, filename='quiver')
    ```
    """
    utils.validate_equal_length(x, y, u, v)
    utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale)

    if scaleratio is None:
        quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle)
    else:
        quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle, scaleratio)

    barb_x, barb_y = quiver_obj.get_barbs()
    arrow_x, arrow_y = quiver_obj.get_quiver_arrows()

    quiver_plot = graph_objs.Scatter(x=barb_x + arrow_x,
                                     y=barb_y + arrow_y,
                                     mode="lines",
                                     **kwargs)

    data = [quiver_plot]

    if scaleratio is None:
        layout = graph_objs.Layout(hovermode="closest")
    else:
        layout = graph_objs.Layout(hovermode="closest",
                                   yaxis=dict(scaleratio=scaleratio,
                                              scaleanchor="x"))

    return graph_objs.Figure(data=data, layout=layout)
示例#3
0
def create_quiver(x, y, u, v, scale=.1, arrow_scale=.3,
                  angle=math.pi / 9, scaleratio=None, **kwargs):
    """
    Returns data for a quiver plot.

    :param (list|ndarray) x: x coordinates of the arrow locations
    :param (list|ndarray) y: y coordinates of the arrow locations
    :param (list|ndarray) u: x components of the arrow vectors
    :param (list|ndarray) v: y components of the arrow vectors
    :param (float in [0,1]) scale: scales size of the arrows(ideally to
        avoid overlap). Default = .1
    :param (float in [0,1]) arrow_scale: value multiplied to length of barb
        to get length of arrowhead. Default = .3
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (positive float) scaleratio: the ratio between the scale of the y-axis
        and the scale of the x-axis (scale_y / scale_x). Default = None, the
        scale ratio is not fixed.
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of quiver figure.

    Example 1: Trivial Quiver
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import math

    # 1 Arrow from (0,0) to (1,1)
    fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)

    py.plot(fig, filename='quiver')
    ```

    Example 2: Quiver plot using meshgrid
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import numpy as np
    import math

    # Add data
    x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
    u = np.cos(x)*y
    v = np.sin(x)*y

    #Create quiver
    fig = create_quiver(x, y, u, v)

    # Plot
    py.plot(fig, filename='quiver')
    ```

    Example 3: Styling the quiver plot
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver
    import numpy as np
    import math

    # Add data
    x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
                       np.arange(-math.pi, math.pi, .5))
    u = np.cos(x)*y
    v = np.sin(x)*y

    # Create quiver
    fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
                        name='Wind Velocity', line=dict(width=1))

    # Add title to layout
    fig['layout'].update(title='Quiver Plot')

    # Plot
    py.plot(fig, filename='quiver')
    ```

    Example 4: Forcing a fix scale ratio to maintain the arrow length
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import numpy as np

    # Add data
    x,y = np.meshgrid(np.arange(0.5, 3.5, .5), np.arange(0.5, 4.5, .5))
    u = x
    v = y
    angle = np.arctan(v / u)
    norm = 0.25
    u = norm * np.cos(angle)
    v = norm * np.sin(angle)

    # Create quiver with a fix scale ratio
    fig = create_quiver(x, y, u, v, scale = 1, scaleratio = 0.5)

    # Plot
    py.plot(fig, filename='quiver')
    ```
    """
    utils.validate_equal_length(x, y, u, v)
    utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale)

    if scaleratio is None:
        quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle)
    else:
        quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle, scaleratio)

    barb_x, barb_y = quiver_obj.get_barbs()
    arrow_x, arrow_y = quiver_obj.get_quiver_arrows()       
        
    quiver_plot = graph_objs.Scatter(x=barb_x + arrow_x,
                                y=barb_y + arrow_y,
                                mode='lines', **kwargs)

    data = [quiver_plot]

    if scaleratio is None:
        layout = graph_objs.Layout(hovermode='closest')
    else:
        layout = graph_objs.Layout(
            hovermode='closest',
            yaxis=dict(
                scaleratio = scaleratio,
                scaleanchor = "x"
                )
            )

    return graph_objs.Figure(data=data, layout=layout)
def create_quiver(x,
                  y,
                  u,
                  v,
                  scale=.1,
                  arrow_scale=.3,
                  angle=math.pi / 9,
                  **kwargs):
    """
    Returns data for a quiver plot.

    :param (list|ndarray) x: x coordinates of the arrow locations
    :param (list|ndarray) y: y coordinates of the arrow locations
    :param (list|ndarray) u: x components of the arrow vectors
    :param (list|ndarray) v: y components of the arrow vectors
    :param (float in [0,1]) scale: scales size of the arrows(ideally to
        avoid overlap). Default = .1
    :param (float in [0,1]) arrow_scale: value multiplied to length of barb
        to get length of arrowhead. Default = .3
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of quiver figure.

    Example 1: Trivial Quiver
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import math

    # 1 Arrow from (0,0) to (1,1)
    fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)

    py.plot(fig, filename='quiver')
    ```

    Example 2: Quiver plot using meshgrid
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import numpy as np
    import math

    # Add data
    x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
    u = np.cos(x)*y
    v = np.sin(x)*y

    #Create quiver
    fig = create_quiver(x, y, u, v)

    # Plot
    py.plot(fig, filename='quiver')
    ```

    Example 3: Styling the quiver plot
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver
    import numpy as np
    import math

    # Add data
    x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
                       np.arange(-math.pi, math.pi, .5))
    u = np.cos(x)*y
    v = np.sin(x)*y

    # Create quiver
    fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
                        name='Wind Velocity', line=Line(width=1))

    # Add title to layout
    fig['layout'].update(title='Quiver Plot')

    # Plot
    py.plot(fig, filename='quiver')
    ```
    """
    utils.validate_equal_length(x, y, u, v)
    utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale)

    barb_x, barb_y = _Quiver(x, y, u, v, scale, arrow_scale, angle).get_barbs()
    arrow_x, arrow_y = _Quiver(x, y, u, v, scale, arrow_scale,
                               angle).get_quiver_arrows()
    quiver = graph_objs.Scatter(x=barb_x + arrow_x,
                                y=barb_y + arrow_y,
                                mode='lines',
                                **kwargs)

    data = [quiver]
    layout = graph_objs.Layout(hovermode='closest')

    return graph_objs.Figure(data=data, layout=layout)
示例#5
0
def create_streamline(x, y, u, v, density=1, angle=math.pi / 9,
                      arrow_scale=.09, **kwargs):
    """
    Returns data for a streamline plot.

    :param (list|ndarray) x: 1 dimensional, evenly spaced list or array
    :param (list|ndarray) y: 1 dimensional, evenly spaced list or array
    :param (ndarray) u: 2 dimensional array
    :param (ndarray) v: 2 dimensional array
    :param (float|int) density: controls the density of streamlines in
        plot. This is multiplied by 30 to scale similiarly to other
        available streamline functions such as matplotlib.
        Default = 1
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (float in [0,1]) arrow_scale: value to scale length of arrowhead
        Default = .09
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of streamline figure.

    Example 1: Plot simple streamline and increase arrow size
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_streamline

    import numpy as np
    import math

    # Add data
    x = np.linspace(-3, 3, 100)
    y = np.linspace(-3, 3, 100)
    Y, X = np.meshgrid(x, y)
    u = -1 - X**2 + Y
    v = 1 + X - Y**2
    u = u.T  # Transpose
    v = v.T  # Transpose

    # Create streamline
    fig = create_streamline(x, y, u, v, arrow_scale=.1)

    # Plot
    py.plot(fig, filename='streamline')
    ```

    Example 2: from nbviewer.ipython.org/github/barbagroup/AeroPython
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_streamline

    import numpy as np
    import math

    # Add data
    N = 50
    x_start, x_end = -2.0, 2.0
    y_start, y_end = -1.0, 1.0
    x = np.linspace(x_start, x_end, N)
    y = np.linspace(y_start, y_end, N)
    X, Y = np.meshgrid(x, y)
    ss = 5.0
    x_s, y_s = -1.0, 0.0

    # Compute the velocity field on the mesh grid
    u_s = ss/(2*np.pi) * (X-x_s)/((X-x_s)**2 + (Y-y_s)**2)
    v_s = ss/(2*np.pi) * (Y-y_s)/((X-x_s)**2 + (Y-y_s)**2)

    # Create streamline
    fig = create_streamline(x, y, u_s, v_s, density=2, name='streamline')

    # Add source point
    point = Scatter(x=[x_s], y=[y_s], mode='markers',
                    marker=Marker(size=14), name='source point')

    # Plot
    fig['data'].append(point)
    py.plot(fig, filename='streamline')
    ```
    """
    utils.validate_equal_length(x, y)
    utils.validate_equal_length(u, v)
    validate_streamline(x, y)
    utils.validate_positive_scalars(density=density, arrow_scale=arrow_scale)

    streamline_x, streamline_y = _Streamline(x, y, u, v,
                                             density, angle,
                                             arrow_scale).sum_streamlines()
    arrow_x, arrow_y = _Streamline(x, y, u, v,
                                   density, angle,
                                   arrow_scale).get_streamline_arrows()

    streamline = graph_objs.Scatter(x=streamline_x + arrow_x,
                                    y=streamline_y + arrow_y,
                                    mode='lines', **kwargs)

    data = [streamline]
    layout = graph_objs.Layout(hovermode='closest')

    return graph_objs.Figure(data=data, layout=layout)
示例#6
0
def create_streamline(x,
                      y,
                      u,
                      v,
                      density=1,
                      angle=math.pi / 9,
                      arrow_scale=0.09,
                      **kwargs):
    """
    Returns data for a streamline plot.

    :param (list|ndarray) x: 1 dimensional, evenly spaced list or array
    :param (list|ndarray) y: 1 dimensional, evenly spaced list or array
    :param (ndarray) u: 2 dimensional array
    :param (ndarray) v: 2 dimensional array
    :param (float|int) density: controls the density of streamlines in
        plot. This is multiplied by 30 to scale similiarly to other
        available streamline functions such as matplotlib.
        Default = 1
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (float in [0,1]) arrow_scale: value to scale length of arrowhead
        Default = .09
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of streamline figure.

    Example 1: Plot simple streamline and increase arrow size

    >>> from plotly.figure_factory import create_streamline
    >>> import plotly.graph_objects as go
    >>> import numpy as np
    >>> import math

    >>> # Add data
    >>> x = np.linspace(-3, 3, 100)
    >>> y = np.linspace(-3, 3, 100)
    >>> Y, X = np.meshgrid(x, y)
    >>> u = -1 - X**2 + Y
    >>> v = 1 + X - Y**2
    >>> u = u.T  # Transpose
    >>> v = v.T  # Transpose

    >>> # Create streamline
    >>> fig = create_streamline(x, y, u, v, arrow_scale=.1)
    >>> fig.show()

    Example 2: from nbviewer.ipython.org/github/barbagroup/AeroPython

    >>> from plotly.figure_factory import create_streamline
    >>> import numpy as np
    >>> import math

    >>> # Add data
    >>> N = 50
    >>> x_start, x_end = -2.0, 2.0
    >>> y_start, y_end = -1.0, 1.0
    >>> x = np.linspace(x_start, x_end, N)
    >>> y = np.linspace(y_start, y_end, N)
    >>> X, Y = np.meshgrid(x, y)
    >>> ss = 5.0
    >>> x_s, y_s = -1.0, 0.0

    >>> # Compute the velocity field on the mesh grid
    >>> u_s = ss/(2*np.pi) * (X-x_s)/((X-x_s)**2 + (Y-y_s)**2)
    >>> v_s = ss/(2*np.pi) * (Y-y_s)/((X-x_s)**2 + (Y-y_s)**2)

    >>> # Create streamline
    >>> fig = create_streamline(x, y, u_s, v_s, density=2, name='streamline')

    >>> # Add source point
    >>> point = go.Scatter(x=[x_s], y=[y_s], mode='markers',
    ...                    marker_size=14, name='source point')

    >>> fig.add_trace(point) # doctest: +SKIP
    >>> fig.show()
    """
    utils.validate_equal_length(x, y)
    utils.validate_equal_length(u, v)
    validate_streamline(x, y)
    utils.validate_positive_scalars(density=density, arrow_scale=arrow_scale)

    streamline_x, streamline_y = _Streamline(x, y, u, v, density, angle,
                                             arrow_scale).sum_streamlines()
    arrow_x, arrow_y = _Streamline(x, y, u, v, density, angle,
                                   arrow_scale).get_streamline_arrows()

    streamline = graph_objs.Scatter(x=streamline_x + arrow_x,
                                    y=streamline_y + arrow_y,
                                    mode="lines",
                                    **kwargs)

    data = [streamline]
    layout = graph_objs.Layout(hovermode="closest")

    return graph_objs.Figure(data=data, layout=layout)
示例#7
0
def create_quiver(x, y, u, v, scale=.1, arrow_scale=.3,
                  angle=math.pi / 9, **kwargs):
    """
    Returns data for a quiver plot.

    :param (list|ndarray) x: x coordinates of the arrow locations
    :param (list|ndarray) y: y coordinates of the arrow locations
    :param (list|ndarray) u: x components of the arrow vectors
    :param (list|ndarray) v: y components of the arrow vectors
    :param (float in [0,1]) scale: scales size of the arrows(ideally to
        avoid overlap). Default = .1
    :param (float in [0,1]) arrow_scale: value multiplied to length of barb
        to get length of arrowhead. Default = .3
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param kwargs: kwargs passed through plotly.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly.graph_objs.Scatter)

    :rtype (dict): returns a representation of quiver figure.

    Example 1: Trivial Quiver
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import math

    # 1 Arrow from (0,0) to (1,1)
    fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)

    py.plot(fig, filename='quiver')
    ```

    Example 2: Quiver plot using meshgrid
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver

    import numpy as np
    import math

    # Add data
    x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
    u = np.cos(x)*y
    v = np.sin(x)*y

    #Create quiver
    fig = create_quiver(x, y, u, v)

    # Plot
    py.plot(fig, filename='quiver')
    ```

    Example 3: Styling the quiver plot
    ```
    import plotly.plotly as py
    from plotly.figure_factory import create_quiver
    import numpy as np
    import math

    # Add data
    x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
                       np.arange(-math.pi, math.pi, .5))
    u = np.cos(x)*y
    v = np.sin(x)*y

    # Create quiver
    fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
                        name='Wind Velocity', line=Line(width=1))

    # Add title to layout
    fig['layout'].update(title='Quiver Plot')

    # Plot
    py.plot(fig, filename='quiver')
    ```
    """
    utils.validate_equal_length(x, y, u, v)
    utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale)

    barb_x, barb_y = _Quiver(x, y, u, v, scale,
                             arrow_scale, angle).get_barbs()
    arrow_x, arrow_y = _Quiver(x, y, u, v, scale,
                               arrow_scale, angle).get_quiver_arrows()
    quiver = graph_objs.Scatter(x=barb_x + arrow_x,
                                y=barb_y + arrow_y,
                                mode='lines', **kwargs)

    data = [quiver]
    layout = graph_objs.Layout(hovermode='closest')

    return graph_objs.Figure(data=data, layout=layout)