示例#1
0
文件: presenter.py 项目: pdruc/naadi
    def build_2d_density(self, **data):
        df = data['df']
        n_records = self.set_size(**data)

        columns = data['columns']
        return ff.create_2d_density(df[:n_records][columns[0]],
                                    df[:n_records][columns[1]])
示例#2
0
def drawHistogram(data, accuracyName, variableName):
    x = [d[variableName] for d in data]
    y = [d[accuracyName] for d in data]
    colorscale = ['rgb(255,0,0)', (1,1,1)]

    f = ff.create_2d_density(
        x, y, colorscale=colorscale,
        hist_color='rgb(255, 237, 222)', point_size=3,
        title='',
        height=1080,
        width=1920)
    return f
示例#3
0
def CC_viz(df,
           charter='Plotly',
           output_chart=False,
           output_dir=None,
           resolution=150,
           display=False):
    ''' Takes two continuous feature names and generates a 2D Kernel Density Plot '''
    U = list(df.columns)[0]
    V = list(df.columns)[1]

    if charter == 'Plotly':
        fig = ff.create_2d_density(df[U],
                                   df[V],
                                   colorscale=px.colors.sequential.Blues_r,
                                   hist_color=(135 / 255, 206 / 255,
                                               250 / 255),
                                   title='')
        fig.update_layout(xaxis_showgrid=False,
                          xaxis_zeroline=False,
                          xaxis_title=U.replace('_', ' ').title(),
                          yaxis_title=V.replace('_', ' ').title(),
                          plot_bgcolor="rgba(0, 0, 0, 0)",
                          paper_bgcolor="rgba(0, 0, 0, 0)",
                          showlegend=False)
        if display: fig.show()
        if output_chart:
            fig.update_xaxes(tickcolor='white', tickfont=dict(color='white'))
            fig.update_yaxes(tickcolor='white', tickfont=dict(color='white'))
            fig.update_layout(font=dict(color="white"))
            fig.write_image(str(output_dir / 'charts' /
                                (U + '_' + V + '.png')),
                            scale=resolution // 72)
    else:
        sns.kdeplot(df[U],
                    df[V],
                    color='blue',
                    shade=True,
                    alpha=0.3,
                    shade_lowest=False)
        if len(df[U]) < 500:
            sns.scatterplot(
                x=df[U], y=df[V], color='blue', alpha=0.5, linewidth=0
            )  # Only show a scatter plot if there are fewer than 500 data points

        plt.xlabel(U.replace('_', ' ').title())
        plt.ylabel(V.replace('_', ' ').title())
        if display: plt.show()
        if output_chart:
            plt.savefig(output_dir / 'charts' / (U + '_' + V + '.png'),
                        dpi=resolution)

    plt.close('all')
示例#4
0
import pandas as pd

iris = load_iris()
columns = ["label"] + iris.feature_names

label = iris.target.reshape([150, 1])
labeled = np.hstack([label, iris.data])

# make dataframe
df = pd.DataFrame(labeled, columns=columns)

# setosaのsepal-lengthとsepal-widthを使います.
setosa = df[df["label"] == 0]

x = setosa['sepal length (cm)']
y = setosa['sepal width (cm)']

# define colorscale
colorscale = [
    '#7A4579', '#D56073', 'rgb(236,158,105)', (1, 1, 0.2), (0.98, 0.98, 0.98)
]

fig = ff.create_2d_density(
    x,
    y,
    colorscale=colorscale,
    hist_color='rgb(0, 128, 222)',
    point_size=3,
)

offline.plot(fig, filename="2d-density", image="png")
示例#5
0
 def create_2D_density(*args, **kwargs):
     FigureFactory._deprecated('create_2D_density', 'create_2d_density')
     from plotly.figure_factory import create_2d_density
     return create_2d_density(*args, **kwargs)
示例#6
0
buildTagData(tags, plots)
"""
-------------------------------------------------------------------------------
--------------------------Creating the plotly figures--------------------------
-------------------------------------------------------------------------------
"""
scatterPointFigure = px.scatter(combinedFrame,
                                x="x",
                                y="y",
                                color="tag",
                                title="Scatter attempt")

heatmapFigure = create_2d_density(combinedFrame.x,
                                  combinedFrame.y,
                                  colorscale=colorscale,
                                  hist_color='rgb(255, 237, 222)',
                                  point_size=1,
                                  title='2D Density Plot',
                                  height=1200,
                                  width=1200)

trackingFigureAnimated = go.Figure(
    data=getAllInitialData(MinuteFrameList, len(MinuteFrameList)),
    layout=go.Layout(
        xaxis=dict(range=[-xMinMax - 10, xMinMax + 10], autorange=False),
        yaxis=dict(range=[-yMinMax - 10, yMinMax + 10], autorange=False),
        title="All Tag Tracker",
        updatemenus=[
            dict(type="buttons",
                 buttons=[dict(label="Play", method="animate", args=[None])])
        ],
        height=800),
##############################################################################
# Scatter Histogram
# ---------------------------------------------------------------------------
# Source:
#   https://plot.ly/python/density-plots/
#   https://plot.ly/python/2d-density-plots/
##############################################################################

import numpy as np
import plotly
import plotly.figure_factory as ff

t = np.linspace(-1, 1.2, 2000)
x = (t**3) + (0.3 * np.random.randn(2000))
y = (t**6) + (0.3 * np.random.randn(2000))

colorscale = ['#426d9f', (1, 1, 1)]

fig = ff.create_2d_density(x,
                           y,
                           colorscale=colorscale,
                           ncontours=20,
                           hist_color='#c4e0f9',
                           point_size=1.5,
                           point_color=(0.0, 0.0, 0.0))

plotly.offline.iplot(fig, filename='histogram_subplots')
plotly.offline.plot(fig, filename='scatterHistogram.html')
示例#8
0
文件: tools.py 项目: plotly/plotly.py
 def create_2D_density(*args, **kwargs):
     FigureFactory._deprecated('create_2D_density', 'create_2d_density')
     from plotly.figure_factory import create_2d_density
     return create_2d_density(*args, **kwargs)
示例#9
0
def scatter(x,
            y,
            legacy,
            names,
            path,
            plots,
            color,
            colormap,
            settings,
            stat=None,
            log=False,
            minvalx=0,
            minvaly=0,
            title=None,
            xmax=None,
            ymax=None):
    """->
    create marginalised scatterplots and KDE plot with marginalized histograms
    -> update from scatter_legacy function to utilise plotly package
    - scatterplot with histogram on both axes
    - kernel density plot with histograms on both axes
    - hexbin not implemented yet
    - pauvre plot temporarily not available
    """
    logging.info(
        f"NanoPlot: Creating {names[0]} vs {names[1]} plots using {x.size} reads."
    )
    if not contains_variance([x, y], names):
        return []
    plots_made = []
    idx = np.random.choice(x.index, min(10000, len(x)), replace=False)
    maxvalx = xmax or np.amax(x[idx])
    maxvaly = ymax or np.amax(y[idx])

    if plots["dot"]:
        if log:
            dot_plot = Plot(path=path + "_loglength_dot.html",
                            title=f"{names[0]} vs {names[1]} plot using dots "
                            "after log transformation of read lengths")
        else:
            dot_plot = Plot(path=path + "_dot.html",
                            title=f"{names[0]} vs {names[1]} plot using dots")

        fig = px.scatter(x=x[idx],
                         y=y[idx],
                         marginal_x="histogram",
                         marginal_y="histogram",
                         range_x=[minvalx, maxvalx],
                         range_y=[minvaly, maxvaly])
        fig.update_traces(marker=dict(color=color))
        fig.update_yaxes(rangemode="tozero")
        fig.update_xaxes(rangemode="tozero")

        fig.update_layout(xaxis_title=names[0],
                          yaxis_title=names[1],
                          title=title or dot_plot.title,
                          title_x=0.5)

        if log:
            ticks = [
                10**i for i in range(10) if not 10**i > 10 * (10**maxvalx)
            ]
            fig.update_layout(xaxis=dict(tickmode='array',
                                         tickvals=np.log10(ticks),
                                         ticktext=ticks,
                                         tickangle=45))

        dot_plot.fig = fig
        dot_plot.html = dot_plot.fig.to_html(full_html=False,
                                             include_plotlyjs='cdn')
        dot_plot.save(settings)
        plots_made.append(dot_plot)

    if plots["kde"]:
        kde_plot = Plot(path=path + "_loglength_kde.html" if log else path +
                        "_kde.html",
                        title=f"{names[0]} vs {names[1]} kde plot")

        col = hex_to_rgb_scale_0_1(color)
        fig = ff.create_2d_density(x[idx],
                                   y[idx],
                                   point_size=3,
                                   hist_color=col,
                                   point_color=col,
                                   colorscale=colormap)

        fig.update_layout(xaxis_title=names[0],
                          yaxis_title=names[1],
                          title=title or kde_plot.title,
                          title_x=0.5,
                          xaxis=dict(tickangle=45))

        if log:
            ticks = [
                10**i for i in range(10) if not 10**i > 10 * (10**maxvalx)
            ]
            fig.update_layout(xaxis=dict(tickmode='array',
                                         tickvals=np.log10(ticks),
                                         ticktext=ticks,
                                         tickangle=45))

        kde_plot.fig = fig
        kde_plot.html = kde_plot.fig.to_html(full_html=False,
                                             include_plotlyjs='cdn')
        kde_plot.save(settings)
        plots_made.append(kde_plot)

    if 1 in legacy.values():
        settings, args = utils.get_args()
        plots_made += scatter_legacy(x=x[idx],
                                     y=y[idx],
                                     names=names,
                                     path=path,
                                     plots=legacy,
                                     color=color,
                                     settings=settings,
                                     stat=stat,
                                     log=log,
                                     minvalx=minvalx,
                                     minvaly=minvaly,
                                     title=title)
    return plots_made
示例#10
0
########### This is about using figure_factory module instead of graph_objs module of plotly to plot a 2D density plot ################

import plotly.offline as offline
import plotly.figure_factory as ff

pubg = pd.read_csv('PUBG.csv')
df_pubg = pubg.apply(pd.to_numeric, errors="ignore")
df_bar_pubg = df_pubg.head(10)
x = df_bar_pubg['solo_Wins']
y = df_bar_pubg['solo_TimeSurvived']
#z = df_bar_pubg['squad_Heals']

colorscale = ['#C09055', '#1B5709', '#FF8237', '#FF65A4', '#C8B4FF']

fig = ff.create_2d_density(x,
                           y,
                           colorscale=colorscale,
                           hist_color='rgb(255,237,222)',
                           point_size='3')

offline.plot(fig, filename='histogram_subplots')