def _iplot3d(las, max_points, point_size, dim, colorscale): """ Plots the 3d point cloud in a compatible version for Jupyter notebooks. :return: """ # Check if in iPython notebook try: cfg = get_ipython().config if 'jupyter' in cfg['IPKernelApp']['connection_file']: if las.header.count > max_points: print( "Point cloud too large, down sampling for plot performance." ) rand = np.random.randint(0, las.count, 30000) x = las.points.x.iloc[rand] y = las.points.y.iloc[rand] z = las.points.z.iloc[rand] color_var = las.points[dim].values[rand] trace1 = go.Scatter3d(x=x, y=y, z=z, mode='markers', marker=dict(size=point_size, color=color_var, colorscale=colorscale, opacity=1)) data = [trace1] layout = go.Layout(margin=dict(l=0, r=0, b=0, t=0), scene=dict(aspectmode="data")) offline.init_notebook_mode(connected=True) fig = go.Figure(data=data, layout=layout) offline.iplot(fig) else: print("This function can only be used within a Jupyter notebook.") return (False) except NameError: return (False)
def trisurf(x, y, z, simplices, show_colorbar, edges_color, scale, colormap=None, color_func=None, plot_edges=False, x_edge=None, y_edge=None, z_edge=None, facecolor=None): """ Refer to FigureFactory.create_trisurf() for docstring """ # numpy import check if not np: raise ImportError("FigureFactory._trisurf() requires " "numpy imported.") points3D = np.vstack((x, y, z)).T simplices = np.atleast_2d(simplices) # vertices of the surface triangles tri_vertices = points3D[simplices] # Define colors for the triangle faces if color_func is None: # mean values of z-coordinates of triangle vertices mean_dists = tri_vertices[:, :, 2].mean(-1) elif isinstance(color_func, (list, np.ndarray)): # Pre-computed list / array of values to map onto color if len(color_func) != len(simplices): raise ValueError("If color_func is a list/array, it must " "be the same length as simplices.") # convert all colors in color_func to rgb for index in range(len(color_func)): if isinstance(color_func[index], str): if '#' in color_func[index]: foo = colors.hex_to_rgb(color_func[index]) color_func[index] = colors.label_rgb(foo) if isinstance(color_func[index], tuple): foo = colors.convert_to_RGB_255(color_func[index]) color_func[index] = colors.label_rgb(foo) mean_dists = np.asarray(color_func) else: # apply user inputted function to calculate # custom coloring for triangle vertices mean_dists = [] for triangle in tri_vertices: dists = [] for vertex in triangle: dist = color_func(vertex[0], vertex[1], vertex[2]) dists.append(dist) mean_dists.append(np.mean(dists)) mean_dists = np.asarray(mean_dists) # Check if facecolors are already strings and can be skipped if isinstance(mean_dists[0], str): facecolor = mean_dists else: min_mean_dists = np.min(mean_dists) max_mean_dists = np.max(mean_dists) if facecolor is None: facecolor = [] for index in range(len(mean_dists)): color = map_face2color(mean_dists[index], colormap, scale, min_mean_dists, max_mean_dists) facecolor.append(color) # Make sure facecolor is a list so output is consistent across Pythons facecolor = np.asarray(facecolor) ii, jj, kk = simplices.T triangles = graph_objs.Mesh3d(x=x, y=y, z=z, facecolor=facecolor, i=ii, j=jj, k=kk, name='') mean_dists_are_numbers = not isinstance(mean_dists[0], str) if mean_dists_are_numbers and show_colorbar is True: # make a colorscale from the colors colorscale = colors.make_colorscale(colormap, scale) colorscale = colors.convert_colorscale_to_rgb(colorscale) colorbar = graph_objs.Scatter3d( x=x[:1], y=y[:1], z=z[:1], mode='markers', marker=dict(size=0.1, color=[min_mean_dists, max_mean_dists], colorscale=colorscale, showscale=True), hoverinfo='None', showlegend=False) # the triangle sides are not plotted if plot_edges is False: if mean_dists_are_numbers and show_colorbar is True: return graph_objs.Data([triangles, colorbar]) else: return graph_objs.Data([triangles]) # define the lists x_edge, y_edge and z_edge, of x, y, resp z # coordinates of edge end points for each triangle # None separates data corresponding to two consecutive triangles is_none = [ii is None for ii in [x_edge, y_edge, z_edge]] if any(is_none): if not all(is_none): raise ValueError("If any (x_edge, y_edge, z_edge) is None, " "all must be None") else: x_edge = [] y_edge = [] z_edge = [] # Pull indices we care about, then add a None column to separate tris ixs_triangles = [0, 1, 2, 0] pull_edges = tri_vertices[:, ixs_triangles, :] x_edge_pull = np.hstack( [pull_edges[:, :, 0], np.tile(None, [pull_edges.shape[0], 1])]) y_edge_pull = np.hstack( [pull_edges[:, :, 1], np.tile(None, [pull_edges.shape[0], 1])]) z_edge_pull = np.hstack( [pull_edges[:, :, 2], np.tile(None, [pull_edges.shape[0], 1])]) # Now unravel the edges into a 1-d vector for plotting x_edge = np.hstack([x_edge, x_edge_pull.reshape([1, -1])[0]]) y_edge = np.hstack([y_edge, y_edge_pull.reshape([1, -1])[0]]) z_edge = np.hstack([z_edge, z_edge_pull.reshape([1, -1])[0]]) if not (len(x_edge) == len(y_edge) == len(z_edge)): raise exceptions.PlotlyError("The lengths of x_edge, y_edge and " "z_edge are not the same.") # define the lines for plotting lines = graph_objs.Scatter3d(x=x_edge, y=y_edge, z=z_edge, mode='lines', line=graph_objs.Line(color=edges_color, width=1.5), showlegend=False) if mean_dists_are_numbers and show_colorbar is True: return graph_objs.Data([triangles, lines, colorbar]) else: return graph_objs.Data([triangles, lines])