def create_plot(feature):
    # ===========================
    # BOX-SCATTER PLOT
    # ===========================
    if feature == "All Countries Box-Scatter Plot":

        fig = go.Figure()

        for column in df.columns[1:-1].to_list():
            fig.add_trace(
                go.Box(y=df[column],
                       name=column,
                       boxpoints='all',
                       hovertext=df["country"]))

        fig.update_layout(
            title="All Countries Box-Scatter Plot",
            updatemenus=[
                go.layout.Updatemenu(
                    active=0,
                    buttons=list([
                        dict(
                            label='cureduexpen_pri',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        True, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Primary Education Expenditure',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='cureduexpen_sec',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, True, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Secondary Education Expenditure',
                                 'showlegend': True
                             }]),
                        dict(
                            label='cureduexpen_ter',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, True, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Tertiary Education Expenditure',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='cureduexpen_total',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, True, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Total Education Expenditure',
                                 'showlegend': True
                             }]),
                        dict(
                            label='eduattain_doctoral',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, True,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Doctoral Education Attainment',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='eduattain_bachelor',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, True,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': "Bachelor's Education Attainment",
                                 'showlegend': True
                             }]),
                        dict(
                            label='eduattain_master',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, True, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': "Master's Education Attainment",
                                    'showlegend': True
                                }
                            ]),
                        dict(label='eduattain_sec',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, True, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Secondary Education Attainment',
                                 'showlegend': True
                             }]),
                        dict(
                            label='eduattain_postsec',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, True, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title':
                                    'Post-Secondary Education Attainment',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='eduattain_primary',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, True, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Primary Education Attainment',
                                 'showlegend': True
                             }]),
                        dict(
                            label='eduattain_tertiary',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        True, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Tertiary Education Attainment',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='eduattain_uppersec',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, True,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title':
                                 'Upper Secondary Education Attainment',
                                 'showlegend': True
                             }]),
                        dict(
                            label='expense',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, True, False, False,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Total Expenses (% GDP)',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='life_expectatbirth_fem',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, True, False, False, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Life Expectancy, Female (Years)',
                                 'showlegend': True
                             }]),
                        dict(
                            label='life_expectatbirth_male',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, True,
                                        False, False, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Life Expectancy Male (Years)',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='life_expectatbirth_total',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, True, False, False,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Life Expectancy Total (Years)',
                                 'showlegend': True
                             }]),
                        dict(
                            label='milexp_gdp',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, True, False, False, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Military Expenditure (% GDP)',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='milexp_usd',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, True,
                                     False, False, False, False, False
                                 ]
                             }, {
                                 'title': 'Military Expenditure (USD)',
                                 'showlegend': True
                             }]),
                        dict(
                            label='totalreserves',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, True, False,
                                        False, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title':
                                    'Total Reserves (% external debt)',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='unemptotal_modeiloest',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, True, False, False, False
                                 ]
                             }, {
                                 'title':
                                 'Unemployment ILO (% Total Labor Force)',
                                 'showlegend': True
                             }]),
                        dict(
                            label='unemptotal_nationalest',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        True, False, False
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title':
                                    'Unemployment National (% Total Labor Force)',
                                    'showlegend': True
                                }
                            ]),
                        dict(label='happiness_score',
                             method='update',
                             args=[{
                                 'visible': [
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, False, False, False,
                                     False, False, False, True, False
                                 ]
                             }, {
                                 'title': 'Happiness Score (1-10)',
                                 'showlegend': True
                             }]),
                        dict(
                            label='social_support',
                            method='update',
                            args=[
                                {
                                    'visible': [
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, False, False, False,
                                        False, False, True
                                    ]
                                },
                                # the index of True aligns with the indices of plot traces
                                {
                                    'title': 'Social Support (1-10)',
                                    'showlegend': True
                                }
                            ]),
                    ]))
            ])

    # ===========================
    # BAR PLOT
    # ===========================
    else:

        # scale all columns from 0-1
        scaler = MinMaxScaler()
        df2 = df.copy()
        df2.loc[:, df2.columns != 'country'] = scaler.fit_transform(
            df2.loc[:, df2.columns != 'country'])
        df2.drop('pay_usd', axis=1, inplace=True)

        # PLOT DATA - BAR
        fig = px.bar(df2,
                     x="country",
                     y=list(df2.columns[1:]),
                     title="All Countries Stacked Bar Plot by Attribute")

        fig.update_layout(barmode='stack',
                          xaxis={
                              'categoryorder': 'array',
                              'categoryarray': by_continent
                          })
        fig.update_xaxes(title={'text': None})

    # ===========================
    # RESIZE PLOT
    # ===========================
    fig.update_layout(autosize=False, width=1200, height=500)

    return plotly.io.to_json(fig)
示例#2
0
 def get_box(cond):
     return go.Box(y=[
         cond['p05'], cond['p25'], cond['p50'], cond['p75'], cond['p95']
     ],
                   x=[cond['experiment']] * 5,
                   name=cond['config'])
示例#3
0
7. Min and Max values are shown with "whiskers".

8. The main use of box plot is to perform a real analysis

"""

# Importing the libraries

import plotly.offline as pyo
import plotly.graph_objs as go

# set up an array of 20 data points, with 20 as the median value
y = [1,14,14,15,16,18,18,19,19,20,20,23,24,26,27,27,28,29,33,54]

# BAsic box plot
data = [go.Box(y=y)]
pyo.plot(data,filename="basic_box_plot.html")

# Changes applied


"""
In this exammple a additional parameter is 'boxpoints' which is use
to show all points
"""
data_1 = [go.Box(y=y,boxpoints='all')]
pyo.plot(data_1,filename="box_plot_1.html")



"""
示例#4
0
def isf_compare_year():
    #get data for each year
    (all_2014, bucket_list_2014) = isf.get_isf_for_years('2014', '2014')
    (all_2015, bucket_list_2015) = isf.get_isf_for_years('2015', '2015')
    (all_2016, bucket_list_2016) = isf.get_isf_for_years('2016', '2016')
    (all_2017, bucket_list_2017) = isf.get_isf_for_years('2017', '2017')
    (all_2018, bucket_list_2018) = isf.get_isf_for_years('2018', '2018')

    #get non-bucketed data for each year
    allData_2014 = [data[0] for data in all_2014 if data[0]]
    allData_2015 = [data[0] for data in all_2015 if data[0]]
    allData_2016 = [data[0] for data in all_2016 if data[0]]
    allData_2017 = [data[0] for data in all_2017 if data[0]]
    allData_2018 = [data[0] for data in all_2018 if data[0]]

    #layout dict
    yaxis_dict = dict(title='mgdl/unit',
                      zeroline=True,
                      zerolinecolor='#800000',
                      showline=False,
                      rangemode='tozero')

    #create plot for non-bucketed data
    allWhisker_2014 = go.Box(y=allData_2014, name='2014')
    allWhisker_2015 = go.Box(y=allData_2015, name='2015')
    allWhisker_2016 = go.Box(y=allData_2016, name='2016')
    allWhisker_2017 = go.Box(y=allData_2017, name='2017')
    allWhisker_2018 = go.Box(y=allData_2018, name='2018')
    layout_allWhisker = go.Layout(title=('All ISF values for each yaer'),
                                  width=1000,
                                  height=800,
                                  yaxis=yaxis_dict)
    graph_all = go.Figure(data=[
        allWhisker_2014, allWhisker_2015, allWhisker_2016, allWhisker_2017,
        allWhisker_2018
    ],
                          layout=layout_allWhisker)
    graphJSON_all = json.dumps(graph_all, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 0-2am time bucket
    plot14_0 = go.Box(y=bucket_list_2014[0], name='2014')
    plot15_0 = go.Box(y=bucket_list_2015[0], name='2015')
    plot16_0 = go.Box(y=bucket_list_2016[0], name='2016')
    plot17_0 = go.Box(y=bucket_list_2017[0], name='2017')
    plot18_0 = go.Box(y=bucket_list_2018[0], name='2018')
    layout_0am = go.Layout(title=('ISF values for 0am-2am time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_0am = go.Figure(
        data=[plot14_0, plot15_0, plot16_0, plot17_0, plot18_0],
        layout=layout_0am)
    graphJSON_0am = json.dumps(graph_0am, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 2-4am time bucket
    plot14_1 = go.Box(y=bucket_list_2014[1], name='2014')
    plot15_1 = go.Box(y=bucket_list_2015[1], name='2015')
    plot16_1 = go.Box(y=bucket_list_2016[1], name='2016')
    plot17_1 = go.Box(y=bucket_list_2017[1], name='2017')
    plot18_1 = go.Box(y=bucket_list_2018[1], name='2018')
    layout_2am = go.Layout(title=('ISF values for 2am-4am time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_2am = go.Figure(
        data=[plot14_1, plot15_1, plot16_1, plot17_1, plot18_1],
        layout=layout_2am)
    graphJSON_2am = json.dumps(graph_2am, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 4-6am time bucket
    plot14_2 = go.Box(y=bucket_list_2014[2], name='2014')
    plot15_2 = go.Box(y=bucket_list_2015[2], name='2015')
    plot16_2 = go.Box(y=bucket_list_2016[2], name='2016')
    plot17_2 = go.Box(y=bucket_list_2017[2], name='2017')
    plot18_2 = go.Box(y=bucket_list_2018[2], name='2018')
    layout_4am = go.Layout(title=('ISF values for 4am-6am time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_4am = go.Figure(
        data=[plot14_2, plot15_2, plot16_2, plot17_2, plot18_2],
        layout=layout_4am)
    graphJSON_4am = json.dumps(graph_4am, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 6am-8am time bucket
    plot14_3 = go.Box(y=bucket_list_2014[3], name='2014')
    plot15_3 = go.Box(y=bucket_list_2015[3], name='2015')
    plot16_3 = go.Box(y=bucket_list_2016[3], name='2016')
    plot17_3 = go.Box(y=bucket_list_2017[3], name='2017')
    plot18_3 = go.Box(y=bucket_list_2018[3], name='2018')

    layout_6am = go.Layout(title=('ISF values for 6am-8am time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)

    graph_6am = go.Figure(
        data=[plot14_3, plot15_3, plot16_3, plot17_3, plot18_3],
        layout=layout_6am)
    graphJSON_6am = json.dumps(graph_6am, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 8am-10am time bucket
    plot14_4 = go.Box(y=bucket_list_2014[4], name='2014')
    plot15_4 = go.Box(y=bucket_list_2015[4], name='2015')
    plot16_4 = go.Box(y=bucket_list_2016[4], name='2016')
    plot17_4 = go.Box(y=bucket_list_2017[4], name='2017')
    plot18_4 = go.Box(y=bucket_list_2018[4], name='2018')

    layout_8am = go.Layout(title=('ISF values for 8am-10am time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)

    graph_8am = go.Figure(
        data=[plot14_4, plot15_4, plot16_4, plot17_4, plot18_4],
        layout=layout_8am)
    graphJSON_8am = json.dumps(graph_8am, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 10am-12pm time bucket
    plot14_5 = go.Box(y=bucket_list_2014[5], name='2014')
    plot15_5 = go.Box(y=bucket_list_2015[5], name='2015')
    plot16_5 = go.Box(y=bucket_list_2016[5], name='2016')
    plot17_5 = go.Box(y=bucket_list_2017[5], name='2017')
    plot18_5 = go.Box(y=bucket_list_2018[5], name='2018')

    layout_10am = go.Layout(title=('ISF values for 10am-12pm time bucket'),
                            width=1000,
                            height=800,
                            yaxis=yaxis_dict)
    graph_10am = go.Figure(
        data=[plot14_5, plot15_5, plot16_5, plot17_5, plot18_5],
        layout=layout_10am)
    graphJSON_10am = json.dumps(graph_10am, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 12pm-2pm time bucket
    plot14_6 = go.Box(y=bucket_list_2014[6], name='2014')
    plot15_6 = go.Box(y=bucket_list_2015[6], name='2015')
    plot16_6 = go.Box(y=bucket_list_2016[6], name='2016')
    plot17_6 = go.Box(y=bucket_list_2017[6], name='2017')
    plot18_6 = go.Box(y=bucket_list_2018[6], name='2018')

    layout_12pm = go.Layout(title=('ISF values for 12pm-2pm time bucket'),
                            width=1000,
                            height=800,
                            yaxis=yaxis_dict)
    graph_12pm = go.Figure(
        data=[plot14_6, plot15_6, plot16_6, plot17_6, plot18_6],
        layout=layout_12pm)
    graphJSON_12pm = json.dumps(graph_12pm, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 2pm-4pm time bucket
    plot14_7 = go.Box(y=bucket_list_2014[7], name='2014')
    plot15_7 = go.Box(y=bucket_list_2015[7], name='2015')
    plot16_7 = go.Box(y=bucket_list_2016[7], name='2016')
    plot17_7 = go.Box(y=bucket_list_2017[7], name='2017')
    plot18_7 = go.Box(y=bucket_list_2018[7], name='2018')

    layout_2pm = go.Layout(title=('ISF values for 2pm-4pm time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_2pm = go.Figure(
        data=[plot14_7, plot15_7, plot16_7, plot17_7, plot18_7],
        layout=layout_2pm)
    graphJSON_2pm = json.dumps(graph_2pm, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 4pm-6pm time bucket
    plot14_8 = go.Box(y=bucket_list_2014[8], name='2014')
    plot15_8 = go.Box(y=bucket_list_2015[8], name='2015')
    plot16_8 = go.Box(y=bucket_list_2016[8], name='2016')
    plot17_8 = go.Box(y=bucket_list_2017[8], name='2017')
    plot18_8 = go.Box(y=bucket_list_2018[8], name='2018')

    layout_4pm = go.Layout(title=('ISF values for 4pm-6pm time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_4pm = go.Figure(
        data=[plot14_8, plot15_8, plot16_8, plot17_8, plot18_8],
        layout=layout_4pm)
    graphJSON_4pm = json.dumps(graph_4pm, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 6pm-8pm time bucket
    plot14_9 = go.Box(y=bucket_list_2014[9], name='2014')
    plot15_9 = go.Box(y=bucket_list_2015[9], name='2015')
    plot16_9 = go.Box(y=bucket_list_2016[9], name='2016')
    plot17_9 = go.Box(y=bucket_list_2017[9], name='2017')
    plot18_9 = go.Box(y=bucket_list_2018[9], name='2018')

    layout_6pm = go.Layout(title=('ISF values for 6pm-8pm time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_6pm = go.Figure(
        data=[plot14_9, plot15_9, plot16_9, plot17_9, plot18_9],
        layout=layout_6pm)
    graphJSON_6pm = json.dumps(graph_6pm, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 8pm-10pm time bucket
    plot14_10 = go.Box(y=bucket_list_2014[10], name='2014')
    plot15_10 = go.Box(y=bucket_list_2015[10], name='2015')
    plot16_10 = go.Box(y=bucket_list_2016[10], name='2016')
    plot17_10 = go.Box(y=bucket_list_2017[10], name='2017')
    plot18_10 = go.Box(y=bucket_list_2018[10], name='2018')

    layout_8pm = go.Layout(title=('ISF values for 8pm-10pm time bucket'),
                           width=1000,
                           height=800,
                           yaxis=yaxis_dict)
    graph_8pm = go.Figure(
        data=[plot14_10, plot15_10, plot16_10, plot17_10, plot18_10],
        layout=layout_8pm)
    graphJSON_8pm = json.dumps(graph_8pm, cls=plotly.utils.PlotlyJSONEncoder)

    #create plot for 10pm-12am time bucket
    plot14_11 = go.Box(y=bucket_list_2014[11], name='2014')
    plot15_11 = go.Box(y=bucket_list_2015[11], name='2015')
    plot16_11 = go.Box(y=bucket_list_2016[11], name='2016')
    plot17_11 = go.Box(y=bucket_list_2017[11], name='2017')
    plot18_11 = go.Box(y=bucket_list_2018[11], name='2018')

    layout_10pm = go.Layout(title=('ISF values for 10pm-12am time bucket'),
                            width=1000,
                            height=800,
                            yaxis=yaxis_dict)
    graph_10pm = go.Figure(
        data=[plot14_11, plot15_11, plot16_11, plot17_11, plot18_11],
        layout=layout_10pm)
    graphJSON_10pm = json.dumps(graph_10pm, cls=plotly.utils.PlotlyJSONEncoder)

    return render_template('isfYear.html',
                           version=app.config['VERSION'],
                           page_title='Minerva Compare ISF Values',
                           graphJSON_all=graphJSON_all,
                           graphJSON_0am=graphJSON_0am,
                           graphJSON_2am=graphJSON_2am,
                           graphJSON_4am=graphJSON_4am,
                           graphJSON_6am=graphJSON_6am,
                           graphJSON_8am=graphJSON_8am,
                           graphJSON_10am=graphJSON_10am,
                           graphJSON_12pm=graphJSON_12pm,
                           graphJSON_2pm=graphJSON_2pm,
                           graphJSON_4pm=graphJSON_4pm,
                           graphJSON_6pm=graphJSON_6pm,
                           graphJSON_8pm=graphJSON_8pm,
                           graphJSON_10pm=graphJSON_10pm)
示例#5
0
def box_plot(data):
    data = [
        go.Box(
            y = data[0],
            marker_color = '#76323F',
            boxmean=True,
            name = '1'
    ),

        go.Box(
            y = data[1],
            marker_color = '#D4D1D3',
            boxmean=True,
            name = '2'

    
    ),

        go.Box(
            y = data[2],
            marker_color = '#565656',
            boxmean=True,
            name = '3'

        ),

        go.Box(
            y = data[3],
            marker_color = '#C09F80',
            boxmean=True,
            name = '4'

        )

    ]

    layout = go.Layout(
        template = 'plotly_white',
        autosize = False,
        bargap = 0.35,
        font = {
            'family': 'Raleway',
            'size': 10
        },
        height = 330,
        legend = {
            'x': -0.0228945952895,
            'y': -0.189563896463,
            'orientation': 'h',
            'yanchor': 'top'
        },
        margin = {
            'r': 0,
            't': 20,
            'b': 10,
            'l': 10
        },
        showlegend = False,
        title = '',
        width = 330,

        xaxis = {
            'autorange': True,
            'showline': True,
            'title': '',
            'type': 'category'
        },
        yaxis = {
            'autorange': True,
            'showgrid': True,
            'showline': True,
            'title': '',
            'type': 'linear',
            'zeroline': False
        },
        transition = {
                'duration': 500,
                'easing': 'cubic-in-out'
            }
    )
    
    figure = go.Figure(data=data, layout=layout)
    
    return figure
示例#6
0
    '#B1CEE6', '#7BD1C7', '#689FA8', '#1F3451', '#6DB29E', '#B1CEE6',
    '#7BD1C7', '#689FA8'
]

fig = go.Figure()

for xd, yd, cls in zip(x_data, y_data, colors):
    fig.add_trace(
        go.Box(y=yd,
               name=xd,
               boxpoints='all',
               jitter=0.5,
               whiskerwidth=0.2,
               fillcolor=cls,
               marker={
                   'color': '#47535C',
                   'size': 2,
                   'line': {
                       'color': cls,
                       'width': 2
                   }
               },
               line_width=1))

fig.update_layout(yaxis=dict(
    autorange=True,
    showgrid=True,
    zeroline=True,
    dtick=250,
    gridcolor='rgb(255, 255, 255)',
    gridwidth=1,
data_frame['finishedSqFt'] = data_frame['finishedSqFt'].astype('int64')
data_frame['lotsizeSqFt'] = data_frame['lotsizeSqFt'].astype('int64')

print(data_frame['amount'].dtype)
print(data_frame['finishedSqFt'].dtype)
print(data_frame['lotsizeSqFt'].dtype)

data_frame = data_frame.loc[(data_frame['amount'] < 2000000)
                            & (data_frame['finishedSqFt'] < 50000) &
                            (data_frame['amount'] > 30000)]

###
# box plot
###
# Create a trace for a box plot
trace = go.Box(y=data_frame['amount'], name='amount', boxpoints='all')

# Assign it to an iterable object named myData
my_data = [trace]

# Add axes and title
my_layout = go.Layout(title='Box plot for house price of Zillow data')

# Setup figure
my_figure = go.Figure(data=my_data, layout=my_layout)

# Create the box plot
py.plot(my_figure, filename='box_zillow_amount')

###
# 2d density plot
            age_bin5 = list()
            i = 0

            for d, a in itertools.izip(data[gene], data['Age']):
                if int(a) <= 55:
                    age_bin1.append(d)
                if 55 < int(a) <= 65:
                    age_bin2.append(d)
                if 65 < int(a) <= 75:
                    age_bin3.append(d)
                if 75 < int(a) <= 55:
                    age_bin4.append(d)
                if int(a) > 85:
                    age_bin5.append(d)

            trace1 = go.Box(y=age_bin1, name="Under 55")
            trace2 = go.Box(y=age_bin2, name="55-65")
            trace3 = go.Box(y=age_bin3, name="65-75")
            trace4 = go.Box(y=age_bin4, name="75-85")
            trace5 = go.Box(y=age_bin5, name="Over 85")

            traces = [trace1, trace2, trace3, trace4, trace5]

            layout = go.Layout(
                title="CNA Value By Age for Gene: {}".format(gene),
                xaxis=dict(title="CNA Value"),
                yaxis=dict(title="Age"))
            figure = go.Figure(data=traces, layout=layout)

            plotly.offline.plot(figure,
                                filename="{}_correlations.html".format(gene))
def box_plot(df,
             groupby=None,
             val=None,
             figsize=(1024, 512),
             jitter=None,
             marker_alpha=1,
             marker_mode=None,
             title='',
             ylabel=''):
    """
    Visualize box plots for all columns in the dataframe <df>.
    
    Parameters
    ----------
    df: pandas dataframe
        each column represents a categorical variable; samples are
        along columns.
        
    groupby: str
        The name of a column to define groups. If None provided,
        we assume equal sample sizes and use columns as groups.

    val: str
        Used in conjuction with <groupby> to choose column values to plot.
        If None, then we choose the first column (excluding <groupby>)
        
    jitter: float (0-1)
        The proportion of each box area to jitter datapoints
        
    marker_alpha: float (0-1)
        The opacity of the data points plotted
        
    boxpoint_mode: 'all','suspectedoutliers', 'Outliers', Boolean, or None
        Specifies the way that datapoints are plotted.
    
    figsize: tuple
        The (width, height) of the figure in pixels
    
    title: str
        The figure title
    
    ylabel: str
        The name of the y axis

    outfile: filepath str
        If provided, output to an HTML file at provided location


    Example
    -------
    from sklearn.datasets import make_classification
    N_FEATURES = 4
    X, y = make_classification(n_samples=100, n_clusters_per_class=1, n_classes=4, n_features=N_FEATURES)

    df = pd.DataFrame(X, columns=['feature_%d' % f for f in range(N_FEATURES)])
    df['class'] = y
    
    box_plot(df, title='Box Plot')

    """
    layout = go.Layout(title=title,
                       height=figsize[1],
                       width=figsize[0],
                       yaxis=go.YAxis(title=ylabel))

    data = []
    if groupby is None:
        for col in df.columns:
            data.append(go.Box(y=df[col], name=col))
    else:
        groups = sorted(df[groupby].unique().tolist())
        if val is None:
            val = df.columns.drop(groupby)[
                0]  # choose first non-groupby column
        for group in groups:
            mask = df[groupby] == group
            data.append(
                go.Box(y=df.loc[mask, val],
                       name=group,
                       jitter=jitter,
                       boxpoints=marker_mode,
                       marker=dict(opacity=marker_alpha)))

    ol.iplot(go.Figure(data=data, layout=layout), show_link=False)
示例#10
0
文件: plotly.py 项目: ynuosoft/spark
def plot_box(data: Union["ps.DataFrame", "ps.Series"], **kwargs):
    import plotly.graph_objs as go
    import pyspark.pandas as ps

    if isinstance(data, ps.DataFrame):
        raise RuntimeError(
            "plotly does not support a box plot with Koalas DataFrame. Use Series instead."
        )

    # 'whis' isn't actually an argument in plotly (but in matplotlib). But seems like
    # plotly doesn't expose the reach of the whiskers to the beyond the first and
    # third quartiles (?). Looks they use default 1.5.
    whis = kwargs.pop("whis", 1.5)
    # 'precision' is Koalas specific to control precision for approx_percentile
    precision = kwargs.pop("precision", 0.01)

    # Plotly options
    boxpoints = kwargs.pop("boxpoints", "suspectedoutliers")
    notched = kwargs.pop("notched", False)
    if boxpoints not in ["suspectedoutliers", False]:
        raise ValueError(
            "plotly plotting backend does not support 'boxpoints' set to '%s'. "
            "Set to 'suspectedoutliers' or False." % boxpoints)
    if notched:
        raise ValueError(
            "plotly plotting backend does not support 'notched' set to '%s'. "
            "Set to False." % notched)

    colname = name_like_string(data.name)
    spark_column_name = data._internal.spark_column_name_for(
        data._column_label)

    # Computes mean, median, Q1 and Q3 with approx_percentile and precision
    col_stats, col_fences = BoxPlotBase.compute_stats(data, spark_column_name,
                                                      whis, precision)

    # Creates a column to flag rows as outliers or not
    outliers = BoxPlotBase.outliers(data, spark_column_name, *col_fences)

    # Computes min and max values of non-outliers - the whiskers
    whiskers = BoxPlotBase.calc_whiskers(spark_column_name, outliers)

    fliers = None
    if boxpoints:
        fliers = BoxPlotBase.get_fliers(spark_column_name, outliers,
                                        whiskers[0])
        fliers = [fliers] if len(fliers) > 0 else None

    fig = go.Figure()
    fig.add_trace(
        go.Box(
            name=colname,
            q1=[col_stats["q1"]],
            median=[col_stats["med"]],
            q3=[col_stats["q3"]],
            mean=[col_stats["mean"]],
            lowerfence=[whiskers[0]],
            upperfence=[whiskers[1]],
            y=fliers,
            boxpoints=boxpoints,
            notched=notched,
            **
            kwargs,  # this is for workarounds. Box takes different options from express.box.
        ))
    fig["layout"]["xaxis"]["title"] = colname
    fig["layout"]["yaxis"]["title"] = "value"
    return fig
示例#11
0
plotly.tools.set_credentials_file(username='******', api_key='hPKWVIYRADr9YBrkCJKL')
import plotly.plotly as py
import plotly.graph_objs as go

x = ['$100', '$100', '$100', '$100', '$100', '$100',
     '$120', '$120', '$120', '$120', '$120', '$120',
     '$140', '$140', '$140', '$140', '$140', '$140',
     '$160', '$160', '$160', '$160', '$160', '$160',
     '$180', '$180', '$180', '$180', '$180', '$180',
     '$200', '$200', '$200', '$200', '$200', '$200']

trace0 = go.Box(
    y=[-100, -50, 48218, 48218, 126144, 190174, -100, 4595, 65295, 65295, 160411, 239776,
    -100, 9938, 82335, 82335, 194883, 289253, 7995, 20713, 116389, 116389, 263419, 388706,
    12200, 26172, 133416, 133416, 297892, 438704],
    x=x,
    name='zv50',
    marker=dict(
        color='#2388D0'
    )
)
trace1 = go.Box(
    y=[-100, -50, 16723, 16723, 32160, 50672, -100, 3348, 24494, 24494, 43291, 66795,
    -100, 7844, 32343, 32343, 54540, 83021, 2621, 12440, 40077, 40077, 65819, 99318,
    6458, 17052, 47905, 47905, 76965, 115451, 10151, 21691, 55856, 55856, 88191, 131697],
    x=x,
    name='zv60',
    marker=dict(
        color='#2F8FD3'
    )
)
trace2 = go.Box(
示例#12
0
文件: 9grapher.py 项目: danacr/Grex
            max_txss.insert(position, max)

            # fig = go.Figure()
            # fig.add_scatter(x=tc,
            #                 y=txs,
            #                 mode='markers',
            #                 line = dict(
            #                 color = ('rgb(22, 96, 167)'),
            #                 width = 1)
            #                     )
            # pio.write_image(fig, "../Backend/graphs/9/sim/"+log.split('.')[0]+".svg")

traces = go.Box(y=time_totals,
                name='9 Sim Agents',
                jitter=0.3,
                pointpos=-1.8,
                boxpoints='all',
                marker=dict(color='rgb(10, 140, 208)', ),
                boxmean=True,
                showlegend=False)

tracer = go.Box(y=time_total,
                name='9 Real Agents',
                jitter=0.3,
                pointpos=-1.8,
                boxpoints='all',
                marker=dict(color='rgb(8, 81, 156)', ),
                boxmean=True,
                showlegend=False)

data = [traces, tracer]
示例#13
0
ys = [
    responses_df['Q35_Part_1'].values, responses_df['Q35_Part_2'].values,
    responses_df['Q35_Part_3'].values, responses_df['Q35_Part_4'].values,
    responses_df['Q35_Part_5'].values, responses_df['Q35_Part_6'].values
]
names = [
    "Self-taught", 'Online courses (Coursera, Udemy, edX, etc.)', 'Work',
    'University', 'Kaggle competitions', 'Other'
]
#colors = ['rgba(93, 164, 214, 0.5)', 'rgba(255, 144, 14, 0.5)', 'rgba(44, 160, 101, 0.5)', 'rgba(255, 65, 54, 0.5)', 'rgba(207, 114, 255, 0.5)', 'rgba(127, 96, 0, 0.5)']
colors = ["#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71", "#df6a84"]

trace = []

for i in range(6):
    trace.append(go.Box(y=ys[i], name=names[i],
                        marker=dict(color=colors[i], )))
layout = go.Layout(
    title='Box plots on % contribution of each ML / DS training category')

fig = go.Figure(data=trace, layout=layout)
iplot(fig, filename="TimeSpent")

# **Observations:**
#
#  * Looking at the median of each of the learning categories, it seems there is no one category that completely dominated the learning process of ML / DS
#  * Self-taught seems to have higher percentage of share in the learning process compared to others.
#  * Only less than half of the respondents have the percentage share of 'University' as greater than 0
#
#
#  ### Distribution of DS / ML Learning Category at different Countries:
#
示例#14
0
#######
# Objective: Make a DataFrame using the Abalone dataset (../data/abalone.csv).
# Take two independent random samples of different sizes from the 'rings' field.
# HINT: np.random.choice(df['rings'],10,replace=False) takes 10 random values
# Use box plots to show that the samples do derive from the same population.
######

# Perform imports here:
import plotly.offline as pyo
import plotly.graph_objs as go
import pandas as pd
import numpy as np

# create a DataFrame from the .csv file:
df = pd.read_csv('data/abalone.csv')

# take two random samples of different sizes:
sample1 = np.random.choice(df['rings'],15,replace=False)
sample2 = np.random.choice(df['rings'],45,replace=False)

# create a data variable with two Box plots:
data = [go.Box(y=sample1,name='Sample1'),go.Box(y=sample2,name='Sample2')]

# add a layout
layout = go.Layout(title='Two Samples')

# create a fig from data & layout, and plot the fig
fig = go.Figure(data=data,layout=layout)

pyo.plot(fig)
示例#15
0
                net_data[tr_exploit][test_exploit].append(d)

    summaries[tr_exploit] = get_summary(data)

    with open(loc_str.format(tr_exploit), 'w') as f:
        json.dump(data, f, indent=2)

summaries['net'] = get_summary(raw_data)

with open(loc_str.format('summary'), 'w') as f:
    json.dump(summaries, f, indent=2)

# plot data
for tr_exploit in exploits:
    accs = [[entry['accuracy'] for entry in net_data[tr_exploit][ex]]
            for ex in exploits]

    boxes = [go.Box(
        y=accs[i],
        name=exploits[i],
        boxmean='sd'
    ) for i in range(len(exploits))]

    layout = go.Layout(
        title='ADD-GAN: Accuracy per Exploit Trained on {}'.format(tr_exploit),
        yaxis=dict(title='Accuracy (%)')
    )

    fig = go.Figure(data=boxes, layout=layout)
    py.plot(fig, filename='add-gan-cross-results-{}'.format(tr_exploit))
示例#16
0
    item_2 = 0
    item_3 = 0
    item_4 = 0
    item_5 = 0
    for item_i in heartDisease[item]:
        for i in range(0,6):
            if (item == i):
                item_i +=1
    heartDisease_i = 0
    for i in  range (0,6):
        heartDisease_i = (item_i/len(heartDisease)) * 100
        print("The percentage of level", i, "in the response variable is: {0:.2f}".format(heartDisease_i)) 

classImbalance('heartdisease')
trace0 = go.Box(
    y=heartDisease['age'],
    name='age'
)
trace1 = go.Box(
    y=heartDisease['sex'],
    name='sex'
)
trace2 = go.Box(
    y=heartDisease['cp'],
    name='cp'
)
trace3 = go.Box(
    y=heartDisease['trestbps'],
    name='trestbps'
)
trace4 = go.Box(
    y=heartDisease['chol'],
示例#17
0
df3 = df3.groupby(['TownID', 'Latitude', 'Longitude'])['Total'].sum()
df3 = df3.values.tolist()
df4 = pd.read_csv("F_area.csv", encoding='utf-8')
df4 = df4[['Total', 'Longitude', 'Latitude', 'TownID']]
df4 = df4.groupby(['TownID', 'Latitude', 'Longitude'])['Total'].sum()
df4 = df4.values.tolist()
df5 = pd.read_csv("C_area.csv", encoding='utf-8')
df5 = df5[['Total', 'Longitude', 'Latitude', 'TownID']]
df5 = df5.groupby(['TownID', 'Latitude', 'Longitude'])['Total'].sum()
df5 = df5.values.tolist()

trace1 = go.Box(
    y=df1,
    name="台北市",
    boxpoints='outliers',
    marker=dict(color='rgba(93, 164, 214, 0.5)', ),
    line=dict(
        width=1,
        color='rgba(93, 164, 214, 0.5)',
    ),
)
trace2 = go.Box(
    y=df2,
    name="桃園市",
    boxpoints='outliers',
    marker=dict(color='rgba(255, 144, 14, 0.5)', ),
    line=dict(
        width=1,
        color='rgba(255, 144, 14, 0.5)',
    ),
)
trace3 = go.Box(
示例#18
0
def data_visualization(data_set):
    fig_check_null = px.imshow(data_set.isnull(),
                               labels=dict(x='Features', y="Samples"),
                               x=list(data_set.columns.values),
                               contrast_rescaling='minmax')
    fig_check_null.update_layout(title={
        'text': "NaN values detection",
        'y': 0.95,
        'x': 0.5,
        'xanchor': 'center',
        'yanchor': 'top'
    },
                                 showlegend=False)
    fig_check_null.show()

    # removed features with multiple NaN values
    data_set = data_set.drop([
        'elevation_gain', 'elevation_loss', 'max_run_cadence', 'steps',
        'avg_stride_length', 'min_elevation', 'max_elevation',
        'avg_double_cadence', 'max_double_cadence', 'max_vertical_speed',
        'water_estimated', 'min_respiration_rate', 'max_respiration_rate',
        'avg_respiration_rate', 'activity_training_load'
    ],
                             axis=1)

    corr = data_set.corr()
    trace = go.Heatmap(z=corr.values,
                       x=corr.index.values,
                       y=corr.columns.values)
    data = [trace]
    fig_corr = go.Figure(data=data,
                         layout={
                             'title': {
                                 'text': "Correlation Matrix",
                                 'y': 0.9,
                                 'x': 0.5,
                                 'xanchor': 'center',
                                 'yanchor': 'top'
                             },
                         })
    fig_corr.show()

    # removed features with low correlation with activity type
    data_set = data_set.drop(['event_type_id', 'moving_duration'], axis=1)

    # removed features highly correlated with others
    data_set = data_set.drop([
        'aerobic_training_effect', 'avg_hr', 'start_time_local',
        'start_time_gmt', 'elapsed_duration', 'max_temperature'
    ],
                             axis=1)

    fig_box = make_subplots(rows=1, cols=len(data_set.columns.values))
    col_count = 1
    for col in data_set:
        fig_box.add_trace(go.Box(y=data_set[col].values,
                                 name=data_set[col].name),
                          row=1,
                          col=col_count)
        col_count += 1

    fig_box.update_layout(title={
        'text': "Outliers Detection",
        'y': 0.9,
        'x': 0.5,
        'xanchor': 'center',
        'yanchor': 'top'
    },
                          showlegend=False)
    fig_box.show()
    return data_set
示例#19
0
def make_pb1(color):
    trace22 = go.Box(x=qdata.Open.pct_change(), marker=dict(color=color))

    data22 = [trace22]
    f22 = dict(data=data22)
    return f22
示例#20
0
def sessionsbytime_figure(df, selected_groupby):
    fig = plotly.subplots.make_subplots(rows=1, cols=1)
    fig.update_layout(margin=dict(l=40, r=40, t=40, b=40))

    # TODO: if weekly is chosen, show the actual session name instead of a dot

    # TODO: use different shapes for PET vs MR

    # TODO: try to connect baseline with followup with arc line or something
    # or could have "by subject" choice that has a subject per y value

    # Customize figure
    #fig['layout'].update(xaxis={'automargin': True}, yaxis={'automargin': True})

    from itertools import cycle
    import plotly.express as px
    palette = cycle(px.colors.qualitative.Plotly)
    #palette = cycle(px.colors.qualitative.Vivid)
    #palette = cycle(px.colors.qualitative.Bold)

    for mod, sesstype in itertools.product(df.MODALITY.unique(), df.SESSTYPE.unique()):
        #print(sesstype, mod)

        # Get subset for this session type
        dfs = df[(df.SESSTYPE == sesstype) & (df.MODALITY == mod)]

        # Nothing to plot so go to next session type
        if dfs.empty:
            continue

        # Plot base on view
        view = 'default'

        if view == "month":
            # TBD
            pass

        elif view == 'all':

            # Let's do this for the all time view to see histograms by year
            # or quarter or whatever fits well

            # Plot this session type
            fig.append_trace(
                go.Histogram(
                    hovertext=dfs['SESSION'],
                    name='{} ({})'.format(sesstype, len(dfs)),
                    x=dfs['DATE'],
                    y=dfs['PROJECT'],
                    ),
                _row,
                _col)

         
        elif view == 'weekly':
            # Let's do this only for the weekly view and customize it specifically
            # for Mon thru Fri and allow you to choose this week and last week

            dfs['ONE'] = 1

            # Plot this session type
            fig.append_trace(
                go.Bar(
                    hovertext=dfs['SESSION'],
                    name='{} ({})'.format(sesstype, len(dfs)),
                    x=dfs['DATE'],
                    y=dfs['ONE'],
                    ),
                _row,
                _col)

            # width function of number of days being plotted
            #@width = 
            #print(fig.layout.xaxis.width)

            fig.update_layout(
                barmode='stack',
                width=900,
                #bargroupgap=0,
                #wbidth=100,
                bargap=0.1)
        else:
            # Create boxplot for this var and add to figure
            # Default to the jittered boxplot with no boxes

            # markers symbols, see https://plotly.com/python/marker-style/
            if mod == 'MR':
                symb = 'circle-dot'
            elif mod == 'PET':
                symb = 'diamond-wide-dot'
            else:
                symb = 'diamond-tall-dot'

            _color = next(palette)

            # Convert hex to rgba with alpha of 0.5
            if _color.startswith('#'):
                _rgba = 'rgba({},{},{},{})'.format(
                    int(_color[1:3], 16),
                    int(_color[3:5], 16),
                    int(_color[5:7], 16),
                    0.7)
            else:
                _r,_g,_b = _color[4:-1].split(',')
                _a = 0.7
                _rgba = 'rgba({},{},{},{})'.format(_r, _g, _b, _a)

            # Plot this session type
            _row = 1
            _col = 1
            fig.append_trace(
                go.Box(
                    name='{} {} ({})'.format(sesstype, mod, len(dfs)),
                    x=dfs['DATE'],
                    y=dfs[selected_groupby],
                    boxpoints='all',
                    jitter=0.7,
                    text=dfs['SESSION'],
                    pointpos=0.5,
                    orientation='h',
                    marker={
                        'symbol': symb,
                        'color': _rgba,
                        'size': 12,
                        'line': dict(width=2, color=_color)
                    },
                    line={'color': 'rgba(0,0,0,0)'},
                    fillcolor='rgba(0,0,0,0)',
                    hoveron='points',
                ),
                _row,
                _col)

            # show lines so we can better distinguish categories
            fig.update_yaxes(showgrid=True)

            #fig.update_xaxes(range=[])
            #full_fig = fig.full_figure_for_development()
            #print(full_fig.layout.xaxis.range)
            x_mins = []
            x_maxs = []
            for trace_data in fig.data:
                x_mins.append(min(trace_data.x))
                x_maxs.append(max(trace_data.x))

            x_min = min(x_mins)
            x_max = max(x_maxs)
            #print('x_min=', x_min, 'x_max=', x_max)

            if x_min == '2021-11-01' or x_min == '2021-11-10':
                fig.update_xaxes(
                    range=('2021-10-31', '2021-12-01'),
                    tickvals=[
                        '2021-11-01',
                        '2021-11-08',
                        '2021-11-15',
                        '2021-11-22',
                        '2021-11-29'])

            fig.update_layout(width=900)


    return fig
示例#21
0
def isfplots():
    '''A box-and-whisker plot with isf data sorted in 2-hr time buckets '''
    (all, bucket_list) = isf.get_all_isf_plus_buckets()
    allData = [data[0] for data in all if data[0]]

    all_whisker = go.Box(y=allData, name='all isf')
    bucket0 = go.Box(y=bucket_list[0], name='0am-2am')
    bucket1 = go.Box(y=bucket_list[1], name='2am-4am')
    bucket2 = go.Box(y=bucket_list[2], name='4am-6am')
    bucket3 = go.Box(y=bucket_list[3], name='6am-8am')
    bucket4 = go.Box(y=bucket_list[4], name='8am-10am')
    bucket5 = go.Box(y=bucket_list[5], name='10am-12pm')
    bucket6 = go.Box(y=bucket_list[6], name='12pm-14pm')
    bucket7 = go.Box(y=bucket_list[7], name='14pm-16pm')
    bucket8 = go.Box(y=bucket_list[8], name='16pm-18pm')
    bucket9 = go.Box(y=bucket_list[9], name='18pm-20pm')
    bucket10 = go.Box(y=bucket_list[10], name='20pm-22pm')
    bucket11 = go.Box(y=bucket_list[11], name='22pm-24pm')
    layout = go.Layout(
        title=('isf values'),
        width=1500,
        height=1000,
        yaxis=dict(
            title='mgdl/unit',
            # the y zeroline is the line where y=0
            zeroline=True,
            zerolinecolor='#800000',
            zerolinewidth=2,
            # this is the vertical line at the left edge
            showline=False,
            rangemode='tozero'))
    graph = go.Figure(data=[
        all_whisker, bucket0, bucket1, bucket2, bucket3, bucket4, bucket5,
        bucket6, bucket7, bucket8, bucket9, bucket10, bucket11
    ],
                      layout=layout)
    graphJSON = json.dumps(graph, cls=plotly.utils.PlotlyJSONEncoder)

    return render_template('isfplots.html',
                           version=app.config['VERSION'],
                           page_title='Minerva ISF values',
                           graphJSON=graphJSON)
import plotly.graph_objs as go
fig = go.Figure()
fig.add_trace(go.Box(
    x=[2,3,1,5],
    y=[
        ['First','First','First','First'],
        ["A","A","A","A"]
    ],
    name="A",
    orientation="h"
))
fig.add_trace(go.Box(
    x=[8,3,6,5],
    y=[
        ['First','First','First','First'],
        ["B","B","B","B"]
    ],
    name="B",
    orientation="h"
))
fig.add_trace(go.Box(
    x=[2,3,2,5],
    y=[
        ['Second','Second','Second','Second'],
        ["C","C","C","C"]
    ],
    name="C",
    orientation="h"
))
fig.add_trace(go.Box(
    x=[7.5,3,6,4],
                                   for i in sorted(df.year.unique())],
                                name='sum')
                 ]
             })
     ],
              className="six columns"),
 ],
          className="row"),
 html.Div([
     html.H3('Nombre de jours d\'accomplissement par année'),
     dcc.Graph(
         id='g3',
         figure={
             'data': [
                 go.Box(y=df[df.year == i]['days_to_complete'].tolist(),
                        name=str(i),
                        boxpoints=False) for i in sorted(df.year.unique())
             ]
         })
 ]),
 html.U(html.H2('Détails')),
 html.Div([
     html.Div([
         dcc.Slider(
             id='year-slider',
             min=df['year'].min(),
             max=df['year'].max(),
             value=df['year'].min(),
             marks={str(year): str(year)
                    for year in df['year'].unique()})
     ],
示例#24
0

# Nearly 80% of the borrowers are female. 
# 
# **Countrywise Loan Amount Distribution:**
# 
# Now let us look at the loan amount distribution at country level. 

# In[ ]:


trace = []
for name, group in kiva_loans_df.groupby("country"):
    trace.append ( 
        go.Box(
            x=group["loan_amount_trunc"].values,
            name=name
        )
    )
layout = go.Layout(
    title='Loan Amount Distribution by country',
    width = 800,
    height = 2000
)
#data = [trace0, trace1]
fig = go.Figure(data=trace, layout=layout)
py.iplot(fig, filename="LoanAmountCountry")


# **Sectorwise Loan Amount distribution:**

# In[ ]:
y_data = [y0, y1, y2, y3, y4]

colors = [
    'rgba(93, 164, 214, 0.5)', 'rgba(255, 144, 14, 0.5)',
    'rgba(44, 160, 101, 0.5)', 'rgba(255, 65, 54, 0.5)',
    'rgba(207, 114, 255, 0.5)', 'rgba(127, 96, 0, 0.5)'
]
traces = []

for xd, yd, cls in zip(x_data, y_data, colors):
    traces.append(
        go.Box(
            y=yd,
            name=xd,
            boxpoints=False,
            jitter=0.5,
            whiskerwidth=0.2,
            fillcolor=cls,
            marker=dict(size=2, ),
            line=dict(width=1),
        ))

layout = go.Layout(
    title='Difference in sales {} from cluster to cluster'.format(
        field_to_plot),
    yaxis=dict(
        autorange=True,
        showgrid=True,
        zeroline=True,
        dtick=50,
        gridcolor='black',
        gridwidth=0.1,
示例#26
0
def update_graph(festival_name, genre_name):
    if festival_name == 'Sundance':
        s, s_winner, s_loser = newDataset(sundance, genre_name)

    elif festival_name == 'Tribeca':
        s, s_winner, s_loser = newDataset(tribeca, genre_name)

    elif festival_name == 'Chicago':
        s, s_winner, s_loser = newDataset(chicago, genre_name)

    elif festival_name == 'Berlin':
        s, s_winner, s_loser = newDataset(berlin, genre_name)

    elif festival_name == 'Rotterdam':
        s, s_winner, s_loser = newDataset(rotterdam, genre_name)

    elif festival_name == 'Cannes':
        s, s_winner, s_loser = newDataset(cannes, genre_name)

    elif festival_name == 'Venice':
        s, s_winner, s_loser = newDataset(venice, genre_name)

    elif festival_name == 'SXSW':
        s, s_winner, s_loser = newDataset(sxsw, genre_name)

    elif festival_name == 'Seattle':
        s, s_winner, s_loser = newDataset(seattle, genre_name)

    elif festival_name == 'SanFrancisco':
        s, s_winner, s_loser = newDataset(san, genre_name)

    elif festival_name == 'Slamdance':
        s, s_winner, s_loser = newDataset(slam, genre_name)

    elif festival_name == 'Locarno':
        s, s_winner, s_loser = newDataset(locarno, genre_name)

    elif festival_name == 'Sitges':
        s, s_winner, s_loser = newDataset(sitges, genre_name)

    elif festival_name == 'Toronto':
        s, s_winner, s_loser = newDataset(toronto, genre_name)

    elif festival_name == 'KarlovyVary':
        s, s_winner, s_loser = newDataset(kv, genre_name)

    elif festival_name == 'HongKong':
        s, s_winner, s_loser = newDataset(hongkong, genre_name)

    elif festival_name == 'Austin':
        s, s_winner, s_loser = newDataset(austin, genre_name)

    elif festival_name == 'Torino':
        s, s_winner, s_loser = newDataset(torino, genre_name)

    elif festival_name == 'Marrakech':
        s, s_winner, s_loser = newDataset(marrakech, genre_name)

    elif festival_name == 'Tokyo':
        s, s_winner, s_loser = newDataset(tokyo, genre_name)

    elif festival_name == 'GoldenHorse':
        s, s_winner, s_loser = newDataset(goldenhorse, genre_name)

    elif festival_name == 'BuenosAires':
        s, s_winner, s_loser = newDataset(buenosaires, genre_name)

    elif festival_name == 'Gramado':
        s, s_winner, s_loser = newDataset(gramado, genre_name)

    elif festival_name == 'Cairo':
        s, s_winner, s_loser = newDataset(cairo, genre_name)

    elif festival_name == 'Havana':
        s, s_winner, s_loser = newDataset(havana, genre_name)

    elif festival_name == 'Rio':
        s, s_winner, s_loser = newDataset(rio, genre_name)

    elif festival_name == 'SaoPaulo':
        s, s_winner, s_loser = newDataset(saopaulo, genre_name)

    elif festival_name == 'AsiaPacific':
        s, s_winner, s_loser = newDataset(asiapacific, genre_name)

    elif festival_name == 'India':
        s, s_winner, s_loser = newDataset(india, genre_name)

    elif festival_name == 'Sydney':
        s, s_winner, s_loser = newDataset(sydney, genre_name)

    elif festival_name == 'Beijing':
        s, s_winner, s_loser = newDataset(beijing, genre_name)

    elif festival_name == 'TokyoF':
        s, s_winner, s_loser = newDataset(tokyof, genre_name)

    elif festival_name == 'AAFCA':
        s, s_winner, s_loser = newDataset(aafca, genre_name)

        s, s_winner, s_loser = newDataset(brisbane, genre_name)

    elif festival_name == 'Jerusalem':
        s, s_winner, s_loser = newDataset(jerusalem, genre_name)

    elif festival_name == 'Haifa':
        s, s_winner, s_loser = newDataset(haifa, genre_name)

    elif festival_name == 'GrandBell':
        s, s_winner, s_loser = newDataset(grandbell, genre_name)

    elif festival_name == 'Fajr':
        s, s_winner, s_loser = newDataset(fajr, genre_name)

    elif festival_name == 'Singapore':
        s, s_winner, s_loser = newDataset(singapore, genre_name)

    elif festival_name == 'Yamagata':
        s, s_winner, s_loser = newDataset(yamagata, genre_name)

    elif festival_name == 'Shanghai':
        s, s_winner, s_loser = newDataset(shanghai, genre_name)

    elif festival_name == 'Kerala':
        s, s_winner, s_loser = newDataset(kerala, genre_name)

    elif festival_name == 'Taipei':
        s, s_winner, s_loser = newDataset(taipei, genre_name)

    elif festival_name == 'Jeonju':
        s, s_winner, s_loser = newDataset(jeonju, genre_name)

    elif festival_name == 'Moscow':
        s, s_winner, s_loser = newDataset(moscow, genre_name)

    elif festival_name == 'Edinburgh':
        s, s_winner, s_loser = newDataset(edinburgh, genre_name)

    elif festival_name == 'Mannheim-Heidelberg':
        s, s_winner, s_loser = newDataset(mannheimheidelberg, genre_name)

    elif festival_name == 'San Sebastián':
        s, s_winner, s_loser = newDataset(sansebastián , genre_name)

    elif festival_name == 'Taormina':
        s, s_winner, s_loser = newDataset(taormina, genre_name)

    elif festival_name == 'London':
        s, s_winner, s_loser = newDataset(london, genre_name)

    elif festival_name == 'Thessaloniki':
        s, s_winner, s_loser = newDataset(thessaloniki, genre_name)

    allfilm = newbo[newbo['Genre_' + festival_name] == genre_name]

    allfilm_outlier, allfilm_new = outliers(allfilm, feature)
    s_outlier, s_new = outliers(s, feature)
    s_winner_new = drop_contenders_new(s_winner, s_new, False)
    s_loser_new = drop_contenders_new(s_loser, s_new, False)

    allmean = cal_mean(allfilm_new, feature)
    smean = cal_mean(s_new, feature)
    slmean = cal_mean(s_loser_new, feature)
    swmean = cal_mean(s_winner_new, feature)

    title1 = festival_name + ' ' + genre_name + ' Box Office Boxplot'
    title2 = genre_name + ' Films Average Box Office'

    figure = go.Figure(data=[go.Box(y=s_winner_new[feature], name='Winners', marker_color='#C4DFE6'),
                             go.Box(y=s_loser_new[feature], name='Nominees', marker_color='#66A5AD'),
                             go.Box(y=s_new[feature], name='Contenders', marker_color='#07575B'),
                             go.Box(y=allfilm_new[feature], name='Non-Contenders', marker_color='#003B46')],
                       layout=go.Layout(title={'text': title1, 'x': 0.5}))
    figure2 = go.Figure(data=[go.Bar(x=[allmean, smean, slmean, swmean],
                                     y=['others', 'contenders', 'nominee', 'winner'],
                                     text=combine[festival_name]['boxoffice'][genre_name],
                                     textposition='auto',
                                     marker_color=['#003B46', '#07575B', '#66A5AD', '#C4DFE6'],
                                     orientation='h')],
                        layout=go.Layout(title={'text': title2, 'x': 0.5}))

    figure.update_layout(
        paper_bgcolor='#1e2130',
        plot_bgcolor='#1e2130',
        legend={'font': {'color': 'darkgray'}},
        font={'color': 'darkgray'},
        showlegend=True
    )
    figure2.update_layout(
        paper_bgcolor='#1e2130',
        plot_bgcolor='#1e2130',
        legend={'font': {'color': 'darkgray'}},
        font={'color': 'darkgray'},
        showlegend=False
    )

    return figure, figure2
def main(_type='alpha',
         _low_connectivity=False,
         _plots=None,
         _plot_types=None):
    if _plots is None:
        _plots = ['same', 'different']
    if _plot_types is None:
        _plot_types = ['stacked_bar', 'box', 'bar']

    _same_arrays = []
    _different_arrays = []
    _same_highest = []
    _different_highest = []

    if _type == 'alpha':
        _alphas = ALPHAS
        _betas = [BETA] * len(ALPHAS)
        _names = _alphas
    elif _type == 'beta':
        _alphas = [ALPHA] * len(BETAS)
        _betas = BETAS
        _names = _betas
    else:
        raise Exception(
            'No such type. Only \'alpha\' or \'beta\' are acceptable.')

    for _alpha, _beta in zip(_alphas, _betas):
        print('Alpha:', _alpha, 'beta:', _beta)
        _, _same_time_lags_arrays, _different_time_lags_arrays, _same_time_lags_highest, \
            _different_time_lags_highest = same_inner_correlation_vs_different_inner_correlation_cross_correlation.compute_fiber_densities(
                _alpha=_alpha, _beta=_beta, _low_connectivity=_low_connectivity)

        _same_arrays.append(_same_time_lags_arrays[TIME_LAG_INDEX])
        _different_arrays.append(_different_time_lags_arrays[TIME_LAG_INDEX])
        _same_highest.append(_same_time_lags_highest)
        _different_highest.append(_different_time_lags_highest)

    if _plots is not None:

        # stacked bar plot
        if 'stacked_bar' in _plot_types:
            for _name, _sums in zip(['same', 'different'],
                                    [_same_highest, _different_highest]):
                if _name in _plots:

                    _y_arrays = [[], [], []]
                    for _type_sums in _sums:
                        _left_wins, _none_wins, _right_wins = 0, 0, 0
                        for _time_lag, _type_sum in zip(
                                same_inner_correlation_vs_different_inner_correlation_cross_correlation
                                .TIME_LAGS, _type_sums):
                            if _time_lag > 0:
                                _left_wins += _type_sum
                            elif _time_lag < 0:
                                _right_wins += _type_sum
                            else:
                                _none_wins += _type_sum
                        _total = sum(_type_sums)
                        _y_arrays[0].append(_left_wins / _total)
                        _y_arrays[1].append(_none_wins / _total)
                        _y_arrays[2].append(_right_wins / _total)

                    _colors_array = config.colors(3)
                    _fig = go.Figure(data=[
                        go.Bar(x=_names,
                               y=_y_array,
                               name=_name,
                               marker={'color': _color}) for _name, _y_array,
                        _color in zip(['Leader', 'None', 'Follower'],
                                      _y_arrays, _colors_array)
                    ],
                                     layout={
                                         'xaxis': {
                                             'title': _type.capitalize(),
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': _names,
                                             'type': 'category'
                                         },
                                         'yaxis': {
                                             'title':
                                             'Highest correlation fraction',
                                             'range': [0, 1.1],
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': [0, 0.5, 1]
                                         },
                                         'barmode': 'stack',
                                         'legend': {
                                             'xanchor': 'right',
                                             'yanchor': 'top',
                                             'bordercolor': 'black',
                                             'borderwidth': 2
                                         },
                                     })

                    save.to_html(_fig=_fig,
                                 _path=os.path.join(paths.PLOTS,
                                                    save.get_module_name()),
                                 _filename='plot_stacked_bar_' + _type +
                                 '_low_con_' + str(_low_connectivity) + '_' +
                                 _name)

        # box plot
        if 'box' in _plot_types:
            for _name, _arrays in zip(['same', 'different'],
                                      [_same_arrays, _different_arrays]):
                if _name in _plots:
                    _fig = go.Figure(
                        data=[
                            go.Box(y=_y,
                                   name=_name,
                                   boxpoints=False,
                                   line={'width': 1},
                                   marker={
                                       'size': 10,
                                       'color': '#2e82bf'
                                   },
                                   showlegend=False)
                            for _y, _name in zip(_arrays, _names)
                        ],
                        layout={
                            'xaxis': {
                                'title': _type.capitalize(),
                                'zeroline': False,
                                'tickmode': 'array',
                                'tickvals': _names,
                                'type': 'category'
                            },
                            'yaxis': {
                                'title':
                                'Inner correlation' if _name == 'same' else
                                'Different network correlation',
                                'range': [-1, 1.1],
                                'zeroline':
                                False,
                                'tickmode':
                                'array',
                                'tickvals': [-1, -0.5, 0, 0.5, 1]
                            }
                        })

                    save.to_html(_fig=_fig,
                                 _path=os.path.join(paths.PLOTS,
                                                    save.get_module_name()),
                                 _filename='plot_box_' + _type + '_low_con_' +
                                 str(_low_connectivity) + '_' + _name)

        # bar plot
        if 'bar' in _plot_types:
            for _name, _sums in zip(['same', 'different'],
                                    [_same_highest, _different_highest]):
                if _name in _plots:
                    _fig = go.Figure(data=go.Bar(
                        x=_names,
                        y=[
                            _type_sums[TIME_LAG_INDEX] / sum(_type_sums)
                            for _type_sums in _sums
                        ],
                        marker={'color': '#2e82bf'}),
                                     layout={
                                         'xaxis': {
                                             'title': _type.capitalize(),
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': _names,
                                             'type': 'category'
                                         },
                                         'yaxis': {
                                             'title': 'Lag ' + str(TIME_LAG) +
                                             ' highest correlation fraction',
                                             'range': [0, 1.1],
                                             'zeroline': False,
                                             'tickmode': 'array',
                                             'tickvals': [0, 0.5, 1]
                                         }
                                     })

                    save.to_html(_fig=_fig,
                                 _path=os.path.join(paths.PLOTS,
                                                    save.get_module_name()),
                                 _filename='plot_bar_' + _type + '_low_con_' +
                                 str(_low_connectivity) + '_' + _name)
def main():
    _simulations = load.structured()
    _simulations = filtering.by_time_points_amount(_simulations, TIME_POINTS)
    _simulations = filtering.by_categories(
        _simulations,
        _is_single_cell=False,
        _is_heterogeneity=True,
        _is_low_connectivity=False,
        _is_causality=False,
        _is_dominant_passive=False,
        _is_fibrin=False
    )
    _simulations = filtering.by_pair_distance(_simulations, _distance=PAIR_DISTANCE)
    _simulations = filtering.by_heterogeneity(_simulations, _std=STD)
    print('Total simulations:', len(_simulations))

    _fiber_densities = compute_fiber_densities(_simulations)

    _window_distances_communicating = [[] for _i in OFFSETS_X]
    _window_distances_non_communicating = [[] for _i in OFFSETS_X]
    # window distances loop
    for _window_distance_index, _window_distance in enumerate(OFFSETS_X):
        print('Window distance:', _window_distance)

        # communicating loop
        for _simulation in tqdm(_simulations, desc='Communicating loop'):
            _left_cell_fiber_densities = _fiber_densities[(_simulation, _window_distance, 'left_cell')]
            _right_cell_fiber_densities = _fiber_densities[(_simulation, _window_distance, 'right_cell')]
            _correlation = compute_lib.correlation(
                compute_lib.derivative(_left_cell_fiber_densities, _n=DERIVATIVE),
                compute_lib.derivative(_right_cell_fiber_densities, _n=DERIVATIVE)
            )
            _window_distances_communicating[_window_distance_index].append(_correlation)

        # non-communicating loop
        _simulations_indices = range(len(_simulations))
        for _simulation_1_index in tqdm(_simulations_indices, desc='Non-communicating pairs loop'):
            _simulation_1 = _simulations[_simulation_1_index]
            for _simulation_2_index in _simulations_indices[_simulation_1_index + 1:]:
                _simulation_2 = _simulations[_simulation_2_index]
                for _simulation_1_cell_id, _simulation_2_cell_id in product(['left_cell', 'right_cell'],
                                                                            ['left_cell', 'right_cell']):
                    _simulation_1_fiber_densities = \
                        _fiber_densities[(_simulation_1, _window_distance, _simulation_1_cell_id)]
                    _simulation_2_fiber_densities = \
                        _fiber_densities[(_simulation_2, _window_distance, _simulation_2_cell_id)]
                    _correlation = compute_lib.correlation(
                        compute_lib.derivative(_simulation_1_fiber_densities, _n=DERIVATIVE),
                        compute_lib.derivative(_simulation_2_fiber_densities, _n=DERIVATIVE)
                    )
                    _window_distances_non_communicating[_window_distance_index].append(_correlation)

        # rank sums
        print('Wilcoxon rank-sum tests between communicating and non-communicating:',
              ranksums(_window_distances_communicating[_window_distance_index],
                       _window_distances_non_communicating[_window_distance_index]))

    # plot
    _data = []
    _colors_array = config.colors(2)
    for _communicating, _communicating_text, _pair_distances, _color in \
            zip([True, False], ['Communicating', 'Non-communicating'],
                [_window_distances_communicating, _window_distances_non_communicating],
                _colors_array):
        _y = []
        _x = []
        for _window_distance_index, _window_distance in enumerate(OFFSETS_X):
            _y += _pair_distances[_window_distance_index]
            _x += [_window_distance for _i in _pair_distances[_window_distance_index]]
        _data.append(
            go.Box(
                y=_y,
                x=_x,
                name=_communicating_text,
                boxpoints='all' if _communicating else False,
                jitter=1,
                pointpos=0,
                line={
                    'width': 1
                },
                fillcolor='white',
                marker={
                    'size': 10,
                    'color': _color
                },
                opacity=0.7
            )
        )

    _fig = go.Figure(
        data=_data,
        layout={
            'xaxis': {
                'title': 'Window distance (cell diameter)',
                'zeroline': False,
                'tickmode': 'array',
                'tickvals': OFFSETS_X,
                'type': 'category'
            },
            'yaxis': {
                'title': 'Correlation',
                'range': [-1, 1],
                'zeroline': False,
                'tickmode': 'array',
                'tickvals': [-1, -0.5, 0, 0.5, 1]
            },
            'boxmode': 'group',
            'legend': {
                'xanchor': 'right',
                'yanchor': 'top',
                'bordercolor': 'black',
                'borderwidth': 2
            }
        }
    )

    save.to_html(
        _fig=_fig,
        _path=os.path.join(paths.PLOTS, save.get_module_name()),
        _filename='plot'
    )
示例#29
0
def listToBox(values, n):
    #TODO set colour based on Firefox/Tor Original/Ublock?
    return go.Box(y=values, name=n,
                  boxpoints=False)  #,jitter=0.3,pointpos=-1.8)
示例#30
0
def update_main_graph(parameter, dimension, trace):

	if parameter == 'age':
		lake = lake_age
		sea = sea_age
	elif parameter == 'education':
		lake = lake_edu
		sea = sea_edu
	else:
		lake = lake_gen
		sea = sea_gen

		
	if dimension == 'agreeableness':
		column = "A"
	elif dimension == 'conscientiosness':
		column = "C"
	elif dimension == 'extraversion':
		column = "E"
	elif dimension == 'neuroticism':
		column = "N"
	else:
		column = "O"
	
	trace_ocean = go.Box(
    name = "Respondents",
    x = sea[parameter],
    y = sea[column],
	)	
		
	trace_lake = go.Scatter(
    name = "Mean",
    x = lake[parameter],
    y = lake[column],
	)
	
	trace_progress = go.Scatter(
    name = "Progress",
    x = [lake.loc[0, parameter], lake.loc[len(lake.index) - 1, parameter]], 
    y = [lake.loc[0, column], lake.loc[len(lake.index) - 1, column]],
	)
	
	data = []

	if 'mean' in trace:
		data.append(trace_lake)	
		
	if 'res' in trace:
		data.append(trace_ocean)

	if 'prog' in trace:
		data.append(trace_progress)

	layout = go.Layout(
		xaxis=dict(
			title=parameter.title(),
			showgrid=True,
			zeroline=True,
			zerolinecolor='#969696',
			zerolinewidth=4


		),
		yaxis=dict(
			title=dimension.title(),
			range=[1, 6],
			showgrid=True,
			gridcolor='#bdbdbd',
			gridwidth=1
		)
	)
	
	figure = go.Figure(data = data, layout = layout)

	return figure