def to_mimebundle(self, fig_dict): from plotly.io import write_html # Make iframe size slightly larger than figure size to avoid # having iframe have its own scroll bar. iframe_buffer = 20 layout = fig_dict.get('layout', {}) if layout.get('width', False): iframe_width = str(layout['width'] + iframe_buffer) + 'px' else: iframe_width = '100%' if layout.get('height', False): iframe_height = layout['height'] + iframe_buffer else: iframe_height = str(525 + iframe_buffer) + 'px' # Build filename using ipython cell number ip = IPython.get_ipython() cell_number = list(ip.history_manager.get_tail(1))[0][1] + 1 dirname = 'iframe_figures' filename = '{dirname}/figure_{cell_number}.html'.format( dirname=dirname, cell_number=cell_number) # Make directory for os.makedirs(dirname, exist_ok=True) write_html( fig_dict, filename, config=self.config, auto_play=self.auto_play, include_plotlyjs='directory', include_mathjax='cdn', auto_open=False, post_script=self.post_script, animation_opts=self.animation_opts, default_width='100%', default_height=525, validate=False, ) # Build IFrame iframe_html = """\ <iframe scrolling="no" width="{width}" height="{height}" src="{src}" frameborder="0" allowfullscreen ></iframe> """.format(width=iframe_width, height=iframe_height, src=filename) return {'text/html': iframe_html}
def plot(figure_or_data, show_link=False, link_text='Export to plot.ly', validate=True, output_type='file', include_plotlyjs=True, filename='temp-plot.html', auto_open=True, image=None, image_filename='plot_image', image_width=800, image_height=600, config=None, include_mathjax=False, auto_play=True, animation_opts=None): """ Create a plotly graph locally as an HTML document or string. Example: ``` from plotly.offline import plot import plotly.graph_objs as go plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html') # We can also download an image of the plot by setting the image parameter # to the image format we want plot([go.Scatter(x=[1, 2, 3], y=[3, 2, 6])], filename='my-graph.html', image='jpeg') ``` More examples below. figure_or_data -- a plotly.graph_objs.Figure or plotly.graph_objs.Data or dict or list that describes a Plotly graph. See https://plot.ly/python/ for examples of graph descriptions. Keyword arguments: show_link (default=False) -- display a link in the bottom-right corner of of the chart that will export the chart to Plotly Cloud or Plotly Enterprise link_text (default='Export to plot.ly') -- the text of export link validate (default=True) -- validate that all of the keys in the figure are valid? omit if your version of plotly.js has become outdated with your version of graph_reference.json or if you need to include extra, unnecessary keys in your figure. output_type ('file' | 'div' - default 'file') -- if 'file', then the graph is saved as a standalone HTML file and `plot` returns None. If 'div', then `plot` returns a string that just contains the HTML <div> that contains the graph and the script to generate the graph. Use 'file' if you want to save and view a single graph at a time in a standalone HTML file. Use 'div' if you are embedding these graphs in an HTML file with other graphs or HTML markup, like a HTML report or an website. include_plotlyjs (True | False | 'cdn' | 'directory' | path - default=True) Specifies how the plotly.js library is included in the output html file or div string. If True, a script tag containing the plotly.js source code (~3MB) is included in the output. HTML files generated with this option are fully self-contained and can be used offline. If 'cdn', a script tag that references the plotly.js CDN is included in the output. HTML files generated with this option are about 3MB smaller than those generated with include_plotlyjs=True, but they require an active internet connection in order to load the plotly.js library. If 'directory', a script tag is included that references an external plotly.min.js bundle that is assumed to reside in the same directory as the HTML file. If output_type='file' then the plotly.min.js bundle is copied into the directory of the resulting HTML file. If a file named plotly.min.js already exists in the output directory then this file is left unmodified and no copy is performed. HTML files generated with this option can be used offline, but they require a copy of the plotly.min.js bundle in the same directory. This option is useful when many figures will be saved as HTML files in the same directory because the plotly.js source code will be included only once per output directory, rather than once per output file. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML file to an alternative CDN. If False, no script tag referencing plotly.js is included. This is useful when output_type='div' and the resulting div string will be placed inside an HTML document that already loads plotly.js. This option is not advised when output_type='file' as it will result in a non-functional html file. filename (default='temp-plot.html') -- The local filename to save the outputted chart to. If the filename already exists, it will be overwritten. This argument only applies if `output_type` is 'file'. auto_open (default=True) -- If True, open the saved file in a web browser after saving. This argument only applies if `output_type` is 'file'. image (default=None |'png' |'jpeg' |'svg' |'webp') -- This parameter sets the format of the image to be downloaded, if we choose to download an image. This parameter has a default value of None indicating that no image should be downloaded. Please note: for higher resolution images and more export options, consider making requests to our image servers. Type: `help(py.image)` for more details. image_filename (default='plot_image') -- Sets the name of the file your image will be saved to. The extension should not be included. image_height (default=600) -- Specifies the height of the image in `px`. image_width (default=800) -- Specifies the width of the image in `px`. config (default=None) -- Plot view options dictionary. Keyword arguments `show_link` and `link_text` set the associated options in this dictionary if it doesn't contain them already. include_mathjax (False | 'cdn' | path - default=False) -- Specifies how the MathJax.js library is included in the output html file or div string. MathJax is required in order to display labels with LaTeX typesetting. If False, no script tag referencing MathJax.js will be included in the output. HTML files generated with this option will not be able to display LaTeX typesetting. If 'cdn', a script tag that references a MathJax CDN location will be included in the output. HTML files generated with this option will be able to display LaTeX typesetting as long as they have internet access. If a string that ends in '.js', a script tag is included that references the specified path. This approach can be used to point the resulting HTML file to an alternative CDN. auto_play (default=True) -- Whether to automatically start the animation sequence on page load if the figure contains frames. Has no effect if the figure does not contain frames. animation_opts (default=None) -- dict of custom animation parameters to be passed to the function Plotly.animate in Plotly.js. See https://github.com/plotly/plotly.js/blob/master/src/plots/animation_attributes.js for available options. Has no effect if the figure does not contain frames, or auto_play is False. Example: ``` from plotly.offline import plot figure = {'data': [{'x': [0, 1], 'y': [0, 1]}], 'layout': {'xaxis': {'range': [0, 5], 'autorange': False}, 'yaxis': {'range': [0, 5], 'autorange': False}, 'title': 'Start Title'}, 'frames': [{'data': [{'x': [1, 2], 'y': [1, 2]}]}, {'data': [{'x': [1, 4], 'y': [1, 4]}]}, {'data': [{'x': [3, 4], 'y': [3, 4]}], 'layout': {'title': 'End Title'}}]} plot(figure,animation_opts="{frame: {duration: 1}}") ``` """ import plotly.io as pio # Output type if output_type not in ['div', 'file']: raise ValueError( "`output_type` argument must be 'div' or 'file'. " "You supplied `" + output_type + "``") if not filename.endswith('.html') and output_type == 'file': warnings.warn( "Your filename `" + filename + "` didn't end with .html. " "Adding .html to the end of your file.") filename += '.html' # Config config = dict(config) if config else {} config.setdefault('showLink', show_link) config.setdefault('linkText', link_text) figure = tools.return_figure_from_figure_or_data(figure_or_data, validate) width = figure.get('layout', {}).get('width', '100%') height = figure.get('layout', {}).get('height', '100%') if width == '100%' or height == '100%': config.setdefault('responsive', True) # Handle image request post_script = build_save_image_post_script( image, image_filename, image_height, image_width, 'plot') if output_type == 'file': pio.write_html( figure, filename, config=config, auto_play=auto_play, include_plotlyjs=include_plotlyjs, include_mathjax=include_mathjax, post_script=post_script, full_html=True, validate=validate, animation_opts=animation_opts, auto_open=auto_open) return filename else: return pio.to_html( figure, config=config, auto_play=auto_play, include_plotlyjs=include_plotlyjs, include_mathjax=include_mathjax, post_script=post_script, full_html=False, validate=validate, animation_opts=animation_opts)
lat="LAT", lon="LONG", color="INC", size="INC", animation_frame='DATA', animation_group='INC', mapbox_style='dark', color_continuous_scale=px.colors.sequential.Inferno, range_color=(0, 9000), # closed issue #1 size_max=60, hover_name='CONCELHO', hover_data=['DATA', 'CONCELHO', 'INC'], title='COVID-19 EM PORTUGAL') # Update the layout fig.update_layout( font_size=16, title={ 'xanchor': 'center', 'yanchor': 'top', 'y': 0.2, 'x': 0.5, }, title_font_size=54, mapbox_style="mapbox://styles/vostpt/cko3z46ny0qm817qsgr6a516d") # Write to HTML file pio.write_html(fig, file="index.html", auto_open=True)
textfont=dict(size=18), marker={'colors':['white','#EF7F73','#F1948A','#F4A9A1','#F6BEB8']}, showlegend=True)] fig =go.Figure(data=loans_data) # Create / update the figure layout fig.update_layout( title={'text': "Loans & Bad Debts", 'y':0.9, 'x':0.9, 'font': {'size': 25}}, margin = dict(t=0, l=0, r=0, b=0), legend=dict(font_size=25, x=1, y=0.5), # Add annotations in the center of the donut pies. annotations=[dict(text='Bad Debts', x=0.4, y=0.7, font_size=18, font_color = 'white', showarrow=False), dict(text='Good Loans', x=0.8, y=0.5, font_size=18, font_color = 'white', showarrow=False)]) pio.write_html(fig, file='Pie_loans_fig.html', auto_open=True) # as interactive plot with .html page # Plot the distribution of categorical columns to check for imbalance fig, axes = plt.subplots(2, 3, figsize=(20, 12)) loans['Gender'].value_counts(normalize=True).plot.bar(ax=axes[0][0], fontsize=20 , color='#ce295e') axes[0][0].set_title("GENDER", fontsize=24) loans['Ownership'].value_counts(normalize=True).plot.bar(ax=axes[0][1], fontsize=20, color='#ce295e') axes[0][1].set_title("OWNERSHIP", fontsize=24) loans['Age Range'].value_counts(normalize=True).plot.bar(ax=axes[0][2], fontsize=20, color='#ce295e') axes[0][2].set_title("AGE RANGE", fontsize=24) loans['District'].value_counts(normalize=True).plot.bar(ax=axes[1][0], fontsize=20, color='#ce295e') axes[1][0].set_title("DISTRICT", fontsize=24)
] Cell 11: layout = dict( title = 'Average Temperature by Country, 1910', geo = dict(showframe = False, showocean = True, oceancolor = 'rgb(0,255,255)', projection = dict(type = 'orthographic'), ) ) Cell 12: fig = dict(data = data, layout = layout) Cell 13: pio.write_html(fig, file = 'graph1.html', auto_open = True) Cell 14: data_slider = [] Cell 15: for each_y in temp_hist_by_country.Year.unique(): data_one_year = dict(type = 'choropleth', colorscale = scl, autocolorscale = False, locations = countries, text = "Year: " + str(each_y), z = temp_hist_by_country.loc[temp_hist_by_country["Year"] == each_y, "Average Temperature (Celsius)"], zmin = -20, zmax = 30, locationmode = 'country names',
y1=1, xref='x', x0='2020-07-03', x1='2020-07-03', line=dict(color='Red', width=1, dash='dashdot'))) fig.add_annotation(text="Día sin IVA #2", x='2020-07-01', y=totalAcum['Acumulado'].max(), showarrow=False, textangle=270) fig.show() #Crea archivo HTML para la visualizacion import plotly.io as pio pio.write_html(fig, file='V1.html', auto_open=True) ##################################################### #Genera grafico fig = px.line(totalAcum, x='FechaDiag', y='NroCasosDia') fig.add_shape( dict(type='line', yref='paper', y0=0, y1=1, xref='x', x0='2020-06-20', x1='2020-06-20', line=dict(color='Red', width=1, dash='dashdot')))
import plotly.graph_objects as go import plotly.io as pio import pandas as pd world = pd.read_csv('data/Global_Mobility_Report.csv', dtype={'sub_region_2': object}) by_country = world.groupby(['country_region_code', 'country_region']).mean().reset_index() print(by_country.head()) data = dict(type='choropleth', locations=by_country['country_region'], locationmode='country names', z=by_country['residential_percent_change_from_baseline'], text=by_country['country_region'], colorbar={'title': 'Residential Change from baseline'}, colorscale='blues') layout = dict(title='Google Mobility from baseline', geo=dict(showframe=True, projection={'type': 'natural earth'})) choromap = go.Figure(data=[data], layout=layout) pio.write_html(choromap, 'output/covid_mobility.html', auto_open=True)
def plot_category_bdc(filename, categories, bdc_vals_dict): # # `bdc_vals_dict` should of the form: # bdc_vals_dict = {"cpu": [[a1, b1, ..., d1], [a1, b1, ..., d1], ..., [a1, b1, ..., d1]], # "gpu": [[a2, b2, ..., d2], [a2, b2, ..., d2], ..., [a2, b2, ..., d2]], # ... # "gpu": [[aM, bM, ..., dM], [aM, bM, ..., dM], ..., [aM, bM, ..., dM]} # # `stages` should be of form: # stages = ["S1", "S2", ..., "SN"] # # Squash individual stage BDCs into 1 bdc per category data = [] for (_, hw) in bdc_vals_dict.items(): accs = [] for cat in hw: acc = 0 for stage in cat: acc += stage accs.append(acc) data.append(accs) hws = list(bdc_vals_dict.keys()) # Wrap around first category categories.append(categories[0]) fig = go.Figure() for i in range(len(hws)): # Wrap around first data point data[i].append(data[i][0]) fig.add_trace( go.Scatterpolar(name=hws[i], r=data[i], theta=categories, mode='lines')) # Fonts axis_tick_font = dict(size=14, family='Calibri', color='black') legend_font = axis_tick_font fig.update_layout(polar=dict(radialaxis=dict(showticklabels=False, showline=False, showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.1)'), angularaxis=dict(showgrid=True, gridwidth=1, gridcolor='rgba(0,0,0,0.3)', tickfont=axis_tick_font), bgcolor='white'), showlegend=True) # To generate HTML output: pio.write_html(fig, file=filename + ".html", auto_open=False, include_plotlyjs="cdn") logging.info("Plot generated at: {}".format(filename)) # To generate image file output: fig.write_image(filename + ".pdf") fig.write_image(filename + ".png") logging.info("Plot generated at: {}".format(filename))
def plot_category_bdc_bars(filename, categories, bdc_vals_dict, style=0): # # `bdc_vals_dict` should of the form: # bdc_vals_dict = {"cpu": [[a1, b1, ..., d1], [a1, b1, ..., d1], ..., [a1, b1, ..., d1]], # "gpu": [[a2, b2, ..., d2], [a2, b2, ..., d2], ..., [a2, b2, ..., d2]], # ... # "gpu": [[aM, bM, ..., dM], [aM, bM, ..., dM], ..., [aM, bM, ..., dM]} # # `stages` should be of form: # stages = ["S1", "S2", ..., "SN"] # # Squash individual stage BDCs into 1 bdc per category data = [] for (_, hw) in bdc_vals_dict.items(): accs = [] for cat in hw: acc = 0 for stage in cat: acc += stage accs.append(acc) data.append(accs) hws = list(bdc_vals_dict.keys()) fig = go.Figure() for i in range(len(hws)): fig.add_trace(go.Bar(x=categories, y=data[i], name=hws[i])) # Fonts axis_tick_font = dict(size=12, family='Calibri', color='black') legend_font = axis_tick_font axis_title_font = axis_tick_font fig.update_layout( barmode='group', bargap=0.3, showlegend=True, xaxis=dict( #title_text='BDC Categories', showline=True, linewidth=2, linecolor='black', title_font=axis_title_font, tickfont=axis_tick_font), yaxis=dict(title_text='Backend Development Cost', showline=True, linewidth=2, linecolor='black', showgrid=False, gridcolor='black', gridwidth=1, title_font=axis_title_font, tickfont=axis_tick_font), ) # To generate HTML output: pio.write_html(fig, file=filename + ".html", auto_open=False, include_plotlyjs="cdn") logging.info("Plot generated at: {}".format(filename)) # To generate image file output: fig.write_image(filename + ".pdf") fig.write_image(filename + ".png") logging.info("Plot generated at: {}".format(filename))
fig.update_layout(template='plotly_white') fig.update_layout(xaxis=dict(tickformat="%m-%d")) fig.update_xaxes(range=['2020-03-01', None]) fig.update_layout(annotations=annotations) fig.update_layout(hovermode="x") fig.update_layout(showlegend=False) fig.update_layout(autosize=True, height=400, margin=dict(l=0, r=0)) fig.add_shape( dict(type="line", x0=today, y0=0, x1=today, y1=5, line=dict(color='rgb(65, 65, 69)', width=0.7))) # fig.show() pio.write_html(fig, file='html/us_' + state_name.replace(" ", "_") + '_fuel_demand.html', config={'displayModeBar': False}, auto_open=True, include_plotlyjs='cdn', full_html=False)