示例#1
0
def scatterplot(dataframe, headers, diag, size, height, width, title, **kwargs):
    """
    Refer to FigureFactory.create_scatterplotmatrix() for docstring

    Returns fig for scatterplotmatrix without index

    """
    dim = len(dataframe)
    fig = make_subplots(rows=dim, cols=dim, print_grid=False)
    trace_list = []
    # Insert traces into trace_list
    for listy in dataframe:
        for listx in dataframe:
            if (listx == listy) and (diag == "histogram"):
                trace = graph_objs.Histogram(x=listx, showlegend=False)
            elif (listx == listy) and (diag == "box"):
                trace = graph_objs.Box(y=listx, name=None, showlegend=False)
            else:
                if "marker" in kwargs:
                    kwargs["marker"]["size"] = size
                    trace = graph_objs.Scatter(
                        x=listx, y=listy, mode="markers", showlegend=False, **kwargs
                    )
                    trace_list.append(trace)
                else:
                    trace = graph_objs.Scatter(
                        x=listx,
                        y=listy,
                        mode="markers",
                        marker=dict(size=size),
                        showlegend=False,
                        **kwargs
                    )
            trace_list.append(trace)

    trace_index = 0
    indices = range(1, dim + 1)
    for y_index in indices:
        for x_index in indices:
            fig.append_trace(trace_list[trace_index], y_index, x_index)
            trace_index += 1

    # Insert headers into the figure
    for j in range(dim):
        xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j)
        fig["layout"][xaxis_key].update(title=headers[j])
    for j in range(dim):
        yaxis_key = "yaxis{}".format(1 + (dim * j))
        fig["layout"][yaxis_key].update(title=headers[j])

    fig["layout"].update(height=height, width=width, title=title, showlegend=True)

    hide_tick_labels_from_box_subplots(fig)

    return fig
示例#2
0
def make_non_outlier_interval(d1, d2):
    """
    Returns the scatterplot fig of most of a violin plot.
    """
    return graph_objs.Scatter(
        x=[0, 0],
        y=[d1, d2],
        name="",
        mode="lines",
        line=graph_objs.scatter.Line(width=1.5, color="rgb(0,0,0)"),
    )
示例#3
0
def make_median(q2):
    """
    Formats the 'median' hovertext for a violin plot.
    """
    return graph_objs.Scatter(
        x=[0],
        y=[q2],
        text=["median: " + "{:0.2f}".format(q2)],
        mode="markers",
        marker=dict(symbol="square", color="rgb(255,255,255)"),
        hoverinfo="text",
    )
示例#4
0
def make_violin_rugplot(vals, pdf_max, distance, color="#1f77b4"):
    """
    Returns a rugplot fig for a violin plot.
    """
    return graph_objs.Scatter(
        y=vals,
        x=[-pdf_max - distance] * len(vals),
        marker=graph_objs.scatter.Marker(color=color, symbol="line-ew-open"),
        mode="markers",
        name="",
        showlegend=False,
        hoverinfo="y",
    )
示例#5
0
def make_quartiles(q1, q3):
    """
    Makes the upper and lower quartiles for a violin plot.
    """
    return graph_objs.Scatter(
        x=[0, 0],
        y=[q1, q3],
        text=[
            "lower-quartile: " + "{:0.2f}".format(q1),
            "upper-quartile: " + "{:0.2f}".format(q3),
        ],
        mode="lines",
        line=graph_objs.scatter.Line(width=4, color="rgb(0,0,0)"),
        hoverinfo="text",
    )
示例#6
0
def make_half_violin(x, y, fillcolor="#1f77b4", linecolor="rgb(0, 0, 0)"):
    """
    Produces a sideways probability distribution fig violin plot.
    """
    text = [
        "(pdf(y), y)=(" + "{:0.2f}".format(x[i]) + ", " +
        "{:0.2f}".format(y[i]) + ")" for i in range(len(x))
    ]

    return graph_objs.Scatter(
        x=x,
        y=y,
        mode="lines",
        name="",
        text=text,
        fill="tonextx",
        fillcolor=fillcolor,
        line=graph_objs.scatter.Line(width=0.5,
                                     color=linecolor,
                                     shape="spline"),
        hoverinfo="text",
        opacity=0.5,
    )
示例#7
0
def scatterplot_theme(
    dataframe,
    headers,
    diag,
    size,
    height,
    width,
    title,
    index,
    index_vals,
    endpts,
    colormap,
    colormap_type,
    **kwargs
):
    """
    Refer to FigureFactory.create_scatterplotmatrix() for docstring

    Returns fig for scatterplotmatrix with both index and colormap picked

    """

    # Check if index is made of string values
    if isinstance(index_vals[0], str):
        unique_index_vals = []
        for name in index_vals:
            if name not in unique_index_vals:
                unique_index_vals.append(name)
        n_colors_len = len(unique_index_vals)

        # Convert colormap to list of n RGB tuples
        if colormap_type == "seq":
            foo = clrs.color_parser(colormap, clrs.unlabel_rgb)
            foo = clrs.n_colors(foo[0], foo[1], n_colors_len)
            theme = clrs.color_parser(foo, clrs.label_rgb)

        if colormap_type == "cat":
            # leave list of colors the same way
            theme = colormap

        dim = len(dataframe)
        fig = make_subplots(rows=dim, cols=dim, print_grid=False)
        trace_list = []
        legend_param = 0
        # Work over all permutations of list pairs
        for listy in dataframe:
            for listx in dataframe:
                # create a dictionary for index_vals
                unique_index_vals = {}
                for name in index_vals:
                    if name not in unique_index_vals:
                        unique_index_vals[name] = []

                c_indx = 0  # color index
                # Fill all the rest of the names into the dictionary
                for name in sorted(unique_index_vals.keys()):
                    new_listx = []
                    new_listy = []
                    for j in range(len(index_vals)):
                        if index_vals[j] == name:
                            new_listx.append(listx[j])
                            new_listy.append(listy[j])
                    # Generate trace with VISIBLE icon
                    if legend_param == 1:
                        if (listx == listy) and (diag == "histogram"):
                            trace = graph_objs.Histogram(
                                x=new_listx,
                                marker=dict(color=theme[c_indx]),
                                showlegend=True,
                            )
                        elif (listx == listy) and (diag == "box"):
                            trace = graph_objs.Box(
                                y=new_listx,
                                name=None,
                                marker=dict(color=theme[c_indx]),
                                showlegend=True,
                            )
                        else:
                            if "marker" in kwargs:
                                kwargs["marker"]["size"] = size
                                kwargs["marker"]["color"] = theme[c_indx]
                                trace = graph_objs.Scatter(
                                    x=new_listx,
                                    y=new_listy,
                                    mode="markers",
                                    name=name,
                                    showlegend=True,
                                    **kwargs
                                )
                            else:
                                trace = graph_objs.Scatter(
                                    x=new_listx,
                                    y=new_listy,
                                    mode="markers",
                                    name=name,
                                    marker=dict(size=size, color=theme[c_indx]),
                                    showlegend=True,
                                    **kwargs
                                )
                    # Generate trace with INVISIBLE icon
                    else:
                        if (listx == listy) and (diag == "histogram"):
                            trace = graph_objs.Histogram(
                                x=new_listx,
                                marker=dict(color=theme[c_indx]),
                                showlegend=False,
                            )
                        elif (listx == listy) and (diag == "box"):
                            trace = graph_objs.Box(
                                y=new_listx,
                                name=None,
                                marker=dict(color=theme[c_indx]),
                                showlegend=False,
                            )
                        else:
                            if "marker" in kwargs:
                                kwargs["marker"]["size"] = size
                                kwargs["marker"]["color"] = theme[c_indx]
                                trace = graph_objs.Scatter(
                                    x=new_listx,
                                    y=new_listy,
                                    mode="markers",
                                    name=name,
                                    showlegend=False,
                                    **kwargs
                                )
                            else:
                                trace = graph_objs.Scatter(
                                    x=new_listx,
                                    y=new_listy,
                                    mode="markers",
                                    name=name,
                                    marker=dict(size=size, color=theme[c_indx]),
                                    showlegend=False,
                                    **kwargs
                                )
                    # Push the trace into dictionary
                    unique_index_vals[name] = trace
                    if c_indx >= (len(theme) - 1):
                        c_indx = -1
                    c_indx += 1
                trace_list.append(unique_index_vals)
                legend_param += 1

        trace_index = 0
        indices = range(1, dim + 1)
        for y_index in indices:
            for x_index in indices:
                for name in sorted(trace_list[trace_index].keys()):
                    fig.append_trace(trace_list[trace_index][name], y_index, x_index)
                trace_index += 1

        # Insert headers into the figure
        for j in range(dim):
            xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j)
            fig["layout"][xaxis_key].update(title=headers[j])

        for j in range(dim):
            yaxis_key = "yaxis{}".format(1 + (dim * j))
            fig["layout"][yaxis_key].update(title=headers[j])

        hide_tick_labels_from_box_subplots(fig)

        if diag == "histogram":
            fig["layout"].update(
                height=height,
                width=width,
                title=title,
                showlegend=True,
                barmode="stack",
            )
            return fig

        elif diag == "box":
            fig["layout"].update(
                height=height, width=width, title=title, showlegend=True
            )
            return fig

        else:
            fig["layout"].update(
                height=height, width=width, title=title, showlegend=True
            )
            return fig

    else:
        if endpts:
            intervals = utils.endpts_to_intervals(endpts)

            # Convert colormap to list of n RGB tuples
            if colormap_type == "seq":
                foo = clrs.color_parser(colormap, clrs.unlabel_rgb)
                foo = clrs.n_colors(foo[0], foo[1], len(intervals))
                theme = clrs.color_parser(foo, clrs.label_rgb)

            if colormap_type == "cat":
                # leave list of colors the same way
                theme = colormap

            dim = len(dataframe)
            fig = make_subplots(rows=dim, cols=dim, print_grid=False)
            trace_list = []
            legend_param = 0
            # Work over all permutations of list pairs
            for listy in dataframe:
                for listx in dataframe:
                    interval_labels = {}
                    for interval in intervals:
                        interval_labels[str(interval)] = []

                    c_indx = 0  # color index
                    # Fill all the rest of the names into the dictionary
                    for interval in intervals:
                        new_listx = []
                        new_listy = []
                        for j in range(len(index_vals)):
                            if interval[0] < index_vals[j] <= interval[1]:
                                new_listx.append(listx[j])
                                new_listy.append(listy[j])
                        # Generate trace with VISIBLE icon
                        if legend_param == 1:
                            if (listx == listy) and (diag == "histogram"):
                                trace = graph_objs.Histogram(
                                    x=new_listx,
                                    marker=dict(color=theme[c_indx]),
                                    showlegend=True,
                                )
                            elif (listx == listy) and (diag == "box"):
                                trace = graph_objs.Box(
                                    y=new_listx,
                                    name=None,
                                    marker=dict(color=theme[c_indx]),
                                    showlegend=True,
                                )
                            else:
                                if "marker" in kwargs:
                                    kwargs["marker"]["size"] = size
                                    (kwargs["marker"]["color"]) = theme[c_indx]
                                    trace = graph_objs.Scatter(
                                        x=new_listx,
                                        y=new_listy,
                                        mode="markers",
                                        name=str(interval),
                                        showlegend=True,
                                        **kwargs
                                    )
                                else:
                                    trace = graph_objs.Scatter(
                                        x=new_listx,
                                        y=new_listy,
                                        mode="markers",
                                        name=str(interval),
                                        marker=dict(size=size, color=theme[c_indx]),
                                        showlegend=True,
                                        **kwargs
                                    )
                        # Generate trace with INVISIBLE icon
                        else:
                            if (listx == listy) and (diag == "histogram"):
                                trace = graph_objs.Histogram(
                                    x=new_listx,
                                    marker=dict(color=theme[c_indx]),
                                    showlegend=False,
                                )
                            elif (listx == listy) and (diag == "box"):
                                trace = graph_objs.Box(
                                    y=new_listx,
                                    name=None,
                                    marker=dict(color=theme[c_indx]),
                                    showlegend=False,
                                )
                            else:
                                if "marker" in kwargs:
                                    kwargs["marker"]["size"] = size
                                    (kwargs["marker"]["color"]) = theme[c_indx]
                                    trace = graph_objs.Scatter(
                                        x=new_listx,
                                        y=new_listy,
                                        mode="markers",
                                        name=str(interval),
                                        showlegend=False,
                                        **kwargs
                                    )
                                else:
                                    trace = graph_objs.Scatter(
                                        x=new_listx,
                                        y=new_listy,
                                        mode="markers",
                                        name=str(interval),
                                        marker=dict(size=size, color=theme[c_indx]),
                                        showlegend=False,
                                        **kwargs
                                    )
                        # Push the trace into dictionary
                        interval_labels[str(interval)] = trace
                        if c_indx >= (len(theme) - 1):
                            c_indx = -1
                        c_indx += 1
                    trace_list.append(interval_labels)
                    legend_param += 1

            trace_index = 0
            indices = range(1, dim + 1)
            for y_index in indices:
                for x_index in indices:
                    for interval in intervals:
                        fig.append_trace(
                            trace_list[trace_index][str(interval)], y_index, x_index
                        )
                    trace_index += 1

            # Insert headers into the figure
            for j in range(dim):
                xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j)
                fig["layout"][xaxis_key].update(title=headers[j])
            for j in range(dim):
                yaxis_key = "yaxis{}".format(1 + (dim * j))
                fig["layout"][yaxis_key].update(title=headers[j])

            hide_tick_labels_from_box_subplots(fig)

            if diag == "histogram":
                fig["layout"].update(
                    height=height,
                    width=width,
                    title=title,
                    showlegend=True,
                    barmode="stack",
                )
                return fig

            elif diag == "box":
                fig["layout"].update(
                    height=height, width=width, title=title, showlegend=True
                )
                return fig

            else:
                fig["layout"].update(
                    height=height, width=width, title=title, showlegend=True
                )
                return fig

        else:
            theme = colormap

            # add a copy of rgb color to theme if it contains one color
            if len(theme) <= 1:
                theme.append(theme[0])

            color = []
            for incr in range(len(theme)):
                color.append([1.0 / (len(theme) - 1) * incr, theme[incr]])

            dim = len(dataframe)
            fig = make_subplots(rows=dim, cols=dim, print_grid=False)
            trace_list = []
            legend_param = 0
            # Run through all permutations of list pairs
            for listy in dataframe:
                for listx in dataframe:
                    # Generate trace with VISIBLE icon
                    if legend_param == 1:
                        if (listx == listy) and (diag == "histogram"):
                            trace = graph_objs.Histogram(
                                x=listx, marker=dict(color=theme[0]), showlegend=False
                            )
                        elif (listx == listy) and (diag == "box"):
                            trace = graph_objs.Box(
                                y=listx, marker=dict(color=theme[0]), showlegend=False
                            )
                        else:
                            if "marker" in kwargs:
                                kwargs["marker"]["size"] = size
                                kwargs["marker"]["color"] = index_vals
                                kwargs["marker"]["colorscale"] = color
                                kwargs["marker"]["showscale"] = True
                                trace = graph_objs.Scatter(
                                    x=listx,
                                    y=listy,
                                    mode="markers",
                                    showlegend=False,
                                    **kwargs
                                )
                            else:
                                trace = graph_objs.Scatter(
                                    x=listx,
                                    y=listy,
                                    mode="markers",
                                    marker=dict(
                                        size=size,
                                        color=index_vals,
                                        colorscale=color,
                                        showscale=True,
                                    ),
                                    showlegend=False,
                                    **kwargs
                                )
                    # Generate trace with INVISIBLE icon
                    else:
                        if (listx == listy) and (diag == "histogram"):
                            trace = graph_objs.Histogram(
                                x=listx, marker=dict(color=theme[0]), showlegend=False
                            )
                        elif (listx == listy) and (diag == "box"):
                            trace = graph_objs.Box(
                                y=listx, marker=dict(color=theme[0]), showlegend=False
                            )
                        else:
                            if "marker" in kwargs:
                                kwargs["marker"]["size"] = size
                                kwargs["marker"]["color"] = index_vals
                                kwargs["marker"]["colorscale"] = color
                                kwargs["marker"]["showscale"] = False
                                trace = graph_objs.Scatter(
                                    x=listx,
                                    y=listy,
                                    mode="markers",
                                    showlegend=False,
                                    **kwargs
                                )
                            else:
                                trace = graph_objs.Scatter(
                                    x=listx,
                                    y=listy,
                                    mode="markers",
                                    marker=dict(
                                        size=size,
                                        color=index_vals,
                                        colorscale=color,
                                        showscale=False,
                                    ),
                                    showlegend=False,
                                    **kwargs
                                )
                    # Push the trace into list
                    trace_list.append(trace)
                    legend_param += 1

            trace_index = 0
            indices = range(1, dim + 1)
            for y_index in indices:
                for x_index in indices:
                    fig.append_trace(trace_list[trace_index], y_index, x_index)
                    trace_index += 1

            # Insert headers into the figure
            for j in range(dim):
                xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j)
                fig["layout"][xaxis_key].update(title=headers[j])
            for j in range(dim):
                yaxis_key = "yaxis{}".format(1 + (dim * j))
                fig["layout"][yaxis_key].update(title=headers[j])

            hide_tick_labels_from_box_subplots(fig)

            if diag == "histogram":
                fig["layout"].update(
                    height=height,
                    width=width,
                    title=title,
                    showlegend=True,
                    barmode="stack",
                )
                return fig

            elif diag == "box":
                fig["layout"].update(
                    height=height, width=width, title=title, showlegend=True
                )
                return fig

            else:
                fig["layout"].update(
                    height=height, width=width, title=title, showlegend=True
                )
                return fig
示例#8
0
def scatterplot_dict(
    dataframe,
    headers,
    diag,
    size,
    height,
    width,
    title,
    index,
    index_vals,
    endpts,
    colormap,
    colormap_type,
    **kwargs
):
    """
    Refer to FigureFactory.create_scatterplotmatrix() for docstring

    Returns fig for scatterplotmatrix with both index and colormap picked.
    Used if colormap is a dictionary with index values as keys pointing to
    colors. Forces colormap_type to behave categorically because it would
    not make sense colors are assigned to each index value and thus
    implies that a categorical approach should be taken

    """

    theme = colormap
    dim = len(dataframe)
    fig = make_subplots(rows=dim, cols=dim, print_grid=False)
    trace_list = []
    legend_param = 0
    # Work over all permutations of list pairs
    for listy in dataframe:
        for listx in dataframe:
            # create a dictionary for index_vals
            unique_index_vals = {}
            for name in index_vals:
                if name not in unique_index_vals:
                    unique_index_vals[name] = []

            # Fill all the rest of the names into the dictionary
            for name in sorted(unique_index_vals.keys()):
                new_listx = []
                new_listy = []
                for j in range(len(index_vals)):
                    if index_vals[j] == name:
                        new_listx.append(listx[j])
                        new_listy.append(listy[j])
                # Generate trace with VISIBLE icon
                if legend_param == 1:
                    if (listx == listy) and (diag == "histogram"):
                        trace = graph_objs.Histogram(
                            x=new_listx, marker=dict(color=theme[name]), showlegend=True
                        )
                    elif (listx == listy) and (diag == "box"):
                        trace = graph_objs.Box(
                            y=new_listx,
                            name=None,
                            marker=dict(color=theme[name]),
                            showlegend=True,
                        )
                    else:
                        if "marker" in kwargs:
                            kwargs["marker"]["size"] = size
                            kwargs["marker"]["color"] = theme[name]
                            trace = graph_objs.Scatter(
                                x=new_listx,
                                y=new_listy,
                                mode="markers",
                                name=name,
                                showlegend=True,
                                **kwargs
                            )
                        else:
                            trace = graph_objs.Scatter(
                                x=new_listx,
                                y=new_listy,
                                mode="markers",
                                name=name,
                                marker=dict(size=size, color=theme[name]),
                                showlegend=True,
                                **kwargs
                            )
                # Generate trace with INVISIBLE icon
                else:
                    if (listx == listy) and (diag == "histogram"):
                        trace = graph_objs.Histogram(
                            x=new_listx,
                            marker=dict(color=theme[name]),
                            showlegend=False,
                        )
                    elif (listx == listy) and (diag == "box"):
                        trace = graph_objs.Box(
                            y=new_listx,
                            name=None,
                            marker=dict(color=theme[name]),
                            showlegend=False,
                        )
                    else:
                        if "marker" in kwargs:
                            kwargs["marker"]["size"] = size
                            kwargs["marker"]["color"] = theme[name]
                            trace = graph_objs.Scatter(
                                x=new_listx,
                                y=new_listy,
                                mode="markers",
                                name=name,
                                showlegend=False,
                                **kwargs
                            )
                        else:
                            trace = graph_objs.Scatter(
                                x=new_listx,
                                y=new_listy,
                                mode="markers",
                                name=name,
                                marker=dict(size=size, color=theme[name]),
                                showlegend=False,
                                **kwargs
                            )
                # Push the trace into dictionary
                unique_index_vals[name] = trace
            trace_list.append(unique_index_vals)
            legend_param += 1

    trace_index = 0
    indices = range(1, dim + 1)
    for y_index in indices:
        for x_index in indices:
            for name in sorted(trace_list[trace_index].keys()):
                fig.append_trace(trace_list[trace_index][name], y_index, x_index)
            trace_index += 1

    # Insert headers into the figure
    for j in range(dim):
        xaxis_key = "xaxis{}".format((dim * dim) - dim + 1 + j)
        fig["layout"][xaxis_key].update(title=headers[j])

    for j in range(dim):
        yaxis_key = "yaxis{}".format(1 + (dim * j))
        fig["layout"][yaxis_key].update(title=headers[j])

    hide_tick_labels_from_box_subplots(fig)

    if diag == "histogram":
        fig["layout"].update(
            height=height, width=width, title=title, showlegend=True, barmode="stack"
        )
        return fig

    else:
        fig["layout"].update(height=height, width=width, title=title, showlegend=True)
        return fig
示例#9
0
def violin_colorscale(
    data,
    data_header,
    group_header,
    colors,
    use_colorscale,
    group_stats,
    rugplot,
    sort,
    height,
    width,
    title,
):
    """
    Refer to FigureFactory.create_violin() for docstring.

    Returns fig for violin plot with colorscale.

    """

    # collect all group names
    group_name = []
    for name in data[group_header]:
        if name not in group_name:
            group_name.append(name)
    if sort:
        group_name.sort()

    # make sure all group names are keys in group_stats
    for group in group_name:
        if group not in group_stats:
            raise exceptions.PlotlyError("All values/groups in the index "
                                         "column must be represented "
                                         "as a key in group_stats.")

    gb = data.groupby([group_header])
    L = len(group_name)

    fig = make_subplots(rows=1,
                        cols=L,
                        shared_yaxes=True,
                        horizontal_spacing=0.025,
                        print_grid=False)

    # prepare low and high color for colorscale
    lowcolor = clrs.color_parser(colors[0], clrs.unlabel_rgb)
    highcolor = clrs.color_parser(colors[1], clrs.unlabel_rgb)

    # find min and max values in group_stats
    group_stats_values = []
    for key in group_stats:
        group_stats_values.append(group_stats[key])

    max_value = max(group_stats_values)
    min_value = min(group_stats_values)

    for k, gr in enumerate(group_name):
        vals = np.asarray(gb.get_group(gr)[data_header], np.float)

        # find intermediate color from colorscale
        intermed = (group_stats[gr] - min_value) / (max_value - min_value)
        intermed_color = clrs.find_intermediate_color(lowcolor, highcolor,
                                                      intermed)

        plot_data, plot_xrange = violinplot(
            vals, fillcolor="rgb{}".format(intermed_color), rugplot=rugplot)
        layout = graph_objs.Layout()

        for item in plot_data:
            fig.append_trace(item, 1, k + 1)
        fig["layout"].update(
            {"xaxis{}".format(k + 1): make_XAxis(group_name[k], plot_xrange)})
    # add colorbar to plot
    trace_dummy = graph_objs.Scatter(
        x=[0],
        y=[0],
        mode="markers",
        marker=dict(
            size=2,
            cmin=min_value,
            cmax=max_value,
            colorscale=[[0, colors[0]], [1, colors[1]]],
            showscale=True,
        ),
        showlegend=False,
    )
    fig.append_trace(trace_dummy, 1, L)

    # set the sharey axis style
    fig["layout"].update({"yaxis{}".format(1): make_YAxis("")})
    fig["layout"].update(
        title=title,
        showlegend=False,
        hovermode="closest",
        autosize=False,
        height=height,
        width=width,
    )

    return fig
示例#10
0
def create_2d_density(
    x,
    y,
    colorscale="Earth",
    ncontours=20,
    hist_color=(0, 0, 0.5),
    point_color=(0, 0, 0.5),
    point_size=2,
    title="2D Density Plot",
    height=600,
    width=600,
):
    """
    Returns figure for a 2D density plot

    :param (list|array) x: x-axis data for plot generation
    :param (list|array) y: y-axis data for plot generation
    :param (str|tuple|list) colorscale: either a plotly scale name, an rgb
        or hex color, a color tuple or a list or tuple of colors. An rgb
        color is of the form 'rgb(x, y, z)' where x, y, z belong to the
        interval [0, 255] and a color tuple is a tuple of the form
        (a, b, c) where a, b and c belong to [0, 1]. If colormap is a
        list, it must contain the valid color types aforementioned as its
        members.
    :param (int) ncontours: the number of 2D contours to draw on the plot
    :param (str) hist_color: the color of the plotted histograms
    :param (str) point_color: the color of the scatter points
    :param (str) point_size: the color of the scatter points
    :param (str) title: set the title for the plot
    :param (float) height: the height of the chart
    :param (float) width: the width of the chart

    Examples
    --------

    Example 1: Simple 2D Density Plot

    >>> from plotly_study.figure_factory create_2d_density

    >>> import numpy as np

    >>> # Make data points
    >>> t = np.linspace(-1,1.2,2000)
    >>> x = (t**3)+(0.3*np.random.randn(2000))
    >>> y = (t**6)+(0.3*np.random.randn(2000))

    >>> # Create a figure
    >>> fig = create_2D_density(x, y)

    >>> # Plot the data
    >>> fig.show()

    Example 2: Using Parameters

    >>> from plotly_study.figure_factory create_2d_density

    >>> import numpy as np

    >>> # Make data points
    >>> t = np.linspace(-1,1.2,2000)
    >>> x = (t**3)+(0.3*np.random.randn(2000))
    >>> y = (t**6)+(0.3*np.random.randn(2000))

    >>> # Create custom colorscale
    >>> colorscale = ['#7A4579', '#D56073', 'rgb(236,158,105)',
    ...              (1, 1, 0.2), (0.98,0.98,0.98)]

    >>> # Create a figure
    >>> fig = create_2D_density(x, y, colorscale=colorscale,
    ...       hist_color='rgb(255, 237, 222)', point_size=3)

    >>> # Plot the data
    >>> fig.show()
    """

    # validate x and y are filled with numbers only
    for array in [x, y]:
        if not all(isinstance(element, Number) for element in array):
            raise plotly_study.exceptions.PlotlyError(
                "All elements of your 'x' and 'y' lists must be numbers.")

    # validate x and y are the same length
    if len(x) != len(y):
        raise plotly_study.exceptions.PlotlyError(
            "Both lists 'x' and 'y' must be the same length.")

    colorscale = clrs.validate_colors(colorscale, "rgb")
    colorscale = make_linear_colorscale(colorscale)

    # validate hist_color and point_color
    hist_color = clrs.validate_colors(hist_color, "rgb")
    point_color = clrs.validate_colors(point_color, "rgb")

    trace1 = graph_objs.Scatter(
        x=x,
        y=y,
        mode="markers",
        name="points",
        marker=dict(color=point_color[0], size=point_size, opacity=0.4),
    )
    trace2 = graph_objs.Histogram2dContour(
        x=x,
        y=y,
        name="density",
        ncontours=ncontours,
        colorscale=colorscale,
        reversescale=True,
        showscale=False,
    )
    trace3 = graph_objs.Histogram(x=x,
                                  name="x density",
                                  marker=dict(color=hist_color[0]),
                                  yaxis="y2")
    trace4 = graph_objs.Histogram(y=y,
                                  name="y density",
                                  marker=dict(color=hist_color[0]),
                                  xaxis="x2")
    data = [trace1, trace2, trace3, trace4]

    layout = graph_objs.Layout(
        showlegend=False,
        autosize=False,
        title=title,
        height=height,
        width=width,
        xaxis=dict(domain=[0, 0.85], showgrid=False, zeroline=False),
        yaxis=dict(domain=[0, 0.85], showgrid=False, zeroline=False),
        margin=dict(t=50),
        hovermode="closest",
        bargap=0,
        xaxis2=dict(domain=[0.85, 1], showgrid=False, zeroline=False),
        yaxis2=dict(domain=[0.85, 1], showgrid=False, zeroline=False),
    )

    fig = graph_objs.Figure(data=data, layout=layout)
    return fig
示例#11
0
def create_streamline(
    x, y, u, v, density=1, angle=math.pi / 9, arrow_scale=0.09, **kwargs
):
    """
    Returns data for a streamline plot.

    :param (list|ndarray) x: 1 dimensional, evenly spaced list or array
    :param (list|ndarray) y: 1 dimensional, evenly spaced list or array
    :param (ndarray) u: 2 dimensional array
    :param (ndarray) v: 2 dimensional array
    :param (float|int) density: controls the density of streamlines in
        plot. This is multiplied by 30 to scale similiarly to other
        available streamline functions such as matplotlib.
        Default = 1
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (float in [0,1]) arrow_scale: value to scale length of arrowhead
        Default = .09
    :param kwargs: kwargs passed through plotly_study.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly_study.graph_objs.Scatter)

    :rtype (dict): returns a representation of streamline figure.

    Example 1: Plot simple streamline and increase arrow size

    >>> from plotly_study.figure_factory import create_streamline
    >>> import numpy as np
    >>> import math

    >>> # Add data
    >>> x = np.linspace(-3, 3, 100)
    >>> y = np.linspace(-3, 3, 100)
    >>> Y, X = np.meshgrid(x, y)
    >>> u = -1 - X**2 + Y
    >>> v = 1 + X - Y**2
    >>> u = u.T  # Transpose
    >>> v = v.T  # Transpose

    >>> # Create streamline
    >>> fig = create_streamline(x, y, u, v, arrow_scale=.1)
    >>> fig.show()

    Example 2: from nbviewer.ipython.org/github/barbagroup/AeroPython

    >>> from plotly_study.figure_factory import create_streamline
    >>> import numpy as np
    >>> import math

    >>> # Add data
    >>> N = 50
    >>> x_start, x_end = -2.0, 2.0
    >>> y_start, y_end = -1.0, 1.0
    >>> x = np.linspace(x_start, x_end, N)
    >>> y = np.linspace(y_start, y_end, N)
    >>> X, Y = np.meshgrid(x, y)
    >>> ss = 5.0
    >>> x_s, y_s = -1.0, 0.0

    >>> # Compute the velocity field on the mesh grid
    >>> u_s = ss/(2*np.pi) * (X-x_s)/((X-x_s)**2 + (Y-y_s)**2)
    >>> v_s = ss/(2*np.pi) * (Y-y_s)/((X-x_s)**2 + (Y-y_s)**2)

    >>> # Create streamline
    >>> fig = create_streamline(x, y, u_s, v_s, density=2, name='streamline')

    >>> # Add source point
    >>> point = Scatter(x=[x_s], y=[y_s], mode='markers',
    ...                 marker=Marker(size=14), name='source point')

    >>> fig['data'].append(point)
    >>> fig.show()
    """
    utils.validate_equal_length(x, y)
    utils.validate_equal_length(u, v)
    validate_streamline(x, y)
    utils.validate_positive_scalars(density=density, arrow_scale=arrow_scale)

    streamline_x, streamline_y = _Streamline(
        x, y, u, v, density, angle, arrow_scale
    ).sum_streamlines()
    arrow_x, arrow_y = _Streamline(
        x, y, u, v, density, angle, arrow_scale
    ).get_streamline_arrows()

    streamline = graph_objs.Scatter(
        x=streamline_x + arrow_x, y=streamline_y + arrow_y, mode="lines", **kwargs
    )

    data = [streamline]
    layout = graph_objs.Layout(hovermode="closest")

    return graph_objs.Figure(data=data, layout=layout)
示例#12
0
def create_quiver(x,
                  y,
                  u,
                  v,
                  scale=0.1,
                  arrow_scale=0.3,
                  angle=math.pi / 9,
                  scaleratio=None,
                  **kwargs):
    """
    Returns data for a quiver plot.

    :param (list|ndarray) x: x coordinates of the arrow locations
    :param (list|ndarray) y: y coordinates of the arrow locations
    :param (list|ndarray) u: x components of the arrow vectors
    :param (list|ndarray) v: y components of the arrow vectors
    :param (float in [0,1]) scale: scales size of the arrows(ideally to
        avoid overlap). Default = .1
    :param (float in [0,1]) arrow_scale: value multiplied to length of barb
        to get length of arrowhead. Default = .3
    :param (angle in radians) angle: angle of arrowhead. Default = pi/9
    :param (positive float) scaleratio: the ratio between the scale of the y-axis
        and the scale of the x-axis (scale_y / scale_x). Default = None, the
        scale ratio is not fixed.
    :param kwargs: kwargs passed through plotly_study.graph_objs.Scatter
        for more information on valid kwargs call
        help(plotly_study.graph_objs.Scatter)

    :rtype (dict): returns a representation of quiver figure.

    Example 1: Trivial Quiver

    >>> from plotly_study.figure_factory import create_quiver
    >>> import math

    >>> # 1 Arrow from (0,0) to (1,1)
    >>> fig = create_quiver(x=[0], y=[0], u=[1], v=[1], scale=1)
    >>> fig.show()


    Example 2: Quiver plot using meshgrid

    >>> from plotly_study.figure_factory import create_quiver

    >>> import numpy as np
    >>> import math

    >>> # Add data
    >>> x,y = np.meshgrid(np.arange(0, 2, .2), np.arange(0, 2, .2))
    >>> u = np.cos(x)*y
    >>> v = np.sin(x)*y

    >>> #Create quiver
    >>> fig = create_quiver(x, y, u, v)
    >>> fig.show()


    Example 3: Styling the quiver plot

    >>> from plotly_study.figure_factory import create_quiver
    >>> import numpy as np
    >>> import math

    >>> # Add data
    >>> x, y = np.meshgrid(np.arange(-np.pi, math.pi, .5),
    ...                    np.arange(-math.pi, math.pi, .5))
    >>> u = np.cos(x)*y
    >>> v = np.sin(x)*y

    >>> # Create quiver
    >>> fig = create_quiver(x, y, u, v, scale=.2, arrow_scale=.3, angle=math.pi/6,
    ...                     name='Wind Velocity', line=dict(width=1))

    >>> # Add title to layout
    >>> fig['layout'].update(title='Quiver Plot')
    >>> fig.show()


    Example 4: Forcing a fix scale ratio to maintain the arrow length

    >>> from plotly_study.figure_factory import create_quiver
    >>> import numpy as np

    >>> # Add data
    >>> x,y = np.meshgrid(np.arange(0.5, 3.5, .5), np.arange(0.5, 4.5, .5))
    >>> u = x
    >>> v = y
    >>> angle = np.arctan(v / u)
    >>> norm = 0.25
    >>> u = norm * np.cos(angle)
    >>> v = norm * np.sin(angle)

    >>> # Create quiver with a fix scale ratio
    >>> fig = create_quiver(x, y, u, v, scale = 1, scaleratio = 0.5)
    >>> fig.show()
    """
    utils.validate_equal_length(x, y, u, v)
    utils.validate_positive_scalars(arrow_scale=arrow_scale, scale=scale)

    if scaleratio is None:
        quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle)
    else:
        quiver_obj = _Quiver(x, y, u, v, scale, arrow_scale, angle, scaleratio)

    barb_x, barb_y = quiver_obj.get_barbs()
    arrow_x, arrow_y = quiver_obj.get_quiver_arrows()

    quiver_plot = graph_objs.Scatter(x=barb_x + arrow_x,
                                     y=barb_y + arrow_y,
                                     mode="lines",
                                     **kwargs)

    data = [quiver_plot]

    if scaleratio is None:
        layout = graph_objs.Layout(hovermode="closest")
    else:
        layout = graph_objs.Layout(hovermode="closest",
                                   yaxis=dict(scaleratio=scaleratio,
                                              scaleanchor="x"))

    return graph_objs.Figure(data=data, layout=layout)