import sendemail as se name = os.path.basename(__file__) se.send(name, message) if cfg.plotcut: allcounts = cc.run(reconstructdata, rowcount, int(cfg.mincount)) sys.path.append('/d6/rstein/Hamburg-Cosmic-Rays/BDT') import BDT BDT.run(reconstructdata, rowcount, int(cfg.mincount), allcounts) llcuts = oz.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, allcounts) print llcuts pl.run(reconstructdata+ "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts, allcounts) pz.run(reconstructdata+ "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts, allcounts) pp.run(reconstructdata+ "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts) pe.run(reconstructdata+ "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts) ph.run(reconstructdata+ "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts) if cfg.plot: pz.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) pp.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) pe.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) ph.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) #~ if cfg.plotangle: #~ pa.run(cfg.reconstructdata, rowcount, int(cfg.mincount), cfg.graph) if cfg.radiusstatistics: rs.run(cfg.graph)
if cfg.plotcut: allcounts = cc.run(reconstructdata, rowcount, int(cfg.mincount)) sys.path.append('/d6/rstein/Hamburg-Cosmic-Rays/BDT') import BDT BDT.run(reconstructdata, rowcount, int(cfg.mincount), allcounts) llcuts = oz.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, allcounts) print llcuts pl.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts, allcounts) pz.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts, allcounts) pp.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts) pe.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts) ph.run(reconstructdata + "_BDT", rowcount, int(cfg.mincount), cfg.graph, llcuts) if cfg.plot: pz.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) pp.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) pe.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts) ph.run(reconstructdata, rowcount, int(cfg.mincount), cfg.graph, defaultcuts)
pl.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) pz.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) pp.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) pe.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) ph.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts)
import categorycounts as cc import initialise as i orientation = "ideal" mincount = 5 sys.path.append("/d6/rstein/Hamburg-Cosmic-Rays/BDT") import BDT with open(afspath + "/orientations/" + orientation + ".csv", "rb") as csvfile: reader = csv.reader(csvfile, delimiter=",", quotechar="|") rowcount = 0 for row in reader: rowcount += 1 allcounts = cc.run(reconstructdata, rowcount, int(mincount)) print allcounts BDT.run(reconstructdata, rowcount, int(mincount), allcounts) llcuts = oz.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, allcounts=allcounts) print llcuts pz.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=None, allcounts=allcounts) pl.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) pz.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) pp.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) pe.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts) ph.run(reconstructdata + "_BDT", rowcount, int(mincount), graph=False, cuts=llcuts, allcounts=allcounts)
totaln = n*5000 print time.asctime(time.localtime()),"Cosmic Ray Iron Flux is", flux, "Simulated Area is", area, "Field of View is", solidangle, "Detected Flux is", detectedflux print time.asctime(time.localtime()),"Rate per hour", rateperhour, "Simulated Hours", numberofhours, "Simulated Events", n print time.asctime(time.localtime()),"Simulated 500 events, equal to", totalhours, "Simulated Hours. Simulated Events", totaln pickle_dir = "/nfs/astrop/d6/rstein/chargereconstructionpickle/combined/" statsdata = pickle_dir + "stats.p" traindata = pickle_dir + "trainingset.p" plpd.run(statsdata) BDT.run(traindata, statsdata, int(mincount)) pd.run(statsdata, int(mincount), cuts=[0.0, 0.0]) llcuts = oz.run(statsdata, int(mincount)) pem.run(statsdata, int(mincount), cuts=llcuts) pb.run(statsdata, int(mincount), cuts=llcuts) print "Log Likelihood Cuts", llcuts pz.run(statsdata, int(mincount), cuts=None) pe.run(statsdata, int(mincount), cuts=None) pd.run(statsdata, int(mincount), cuts=None) ph.run(statsdata, int(mincount), cuts=None) pp.run(statsdata, int(mincount), cuts=None) pz.run(statsdata, int(mincount), cuts=llcuts) pl.run(statsdata, int(mincount), cuts=llcuts) pp.run(statsdata, int(mincount), cuts=llcuts) pd.run(statsdata, int(mincount), cuts=[0.0, 0.0]) pe.run(statsdata, int(mincount), cuts=llcuts) ph.run(statsdata, int(mincount), cuts=llcuts)