def plot_factors(spread_factors, save_name, x_lim, y_lim, show=False, train_size=1000, font_size=18): setting_spread = copy.deepcopy(setting) setting_spread.update({ "network_name": "SpreadNet", "line_title2": "$Spread_{PH}$", "plot_colors": ["r", "g", "b"], "plot_marker": [" "], "train_size": train_size, }) setting_dense_spread = copy.deepcopy(setting) setting_dense_spread.update({ "network_name": "DenseSpreadNet", "line_title2": "$MLP_{RT}$", "plot_colors": ["r", "g", "b"], "plot_marker": ["-"], "train_size": train_size, }) settings_spread = [] settings_dense_spread = [] colors = ["r", "g", "b", "y", "g", "b"] for spread_factor, color in zip(spread_factors, colors): print(spread_factor) s_spread = copy.deepcopy(setting_spread) s_dense_spread = copy.deepcopy(setting_dense_spread) s_spread.update({ "spread_factor": spread_factor, "plot_colors": [color], "plot_markers": [" "], "line_title2": s_spread['line_title2'] + " sf " + str(spread_factor) }) s_dense_spread.update({ "spread_factor": spread_factor, "plot_colors": [color], "plot_markers": ["h"], "line_title2": s_dense_spread['line_title2'] + " sf " + str(spread_factor) }) settings_spread.append(s_spread) settings_dense_spread.append(s_dense_spread) network_settings = { "SpreadNet": settings_spread, # "DenseSpreadNet": settings_dense_spread } plot.create_plot(network_settings, save_name, x_lim, y_lim, font_size=font_size) if show: plt.show()
def plot_train_size(train_size, save_name, x_lim, y_lim, show=False): setting_spread = copy.deepcopy(setting) setting_spread.update({ "network_name": "SpreadNet", "line_title2": "$Spread_{PH}$", "plot_colors": ["g"], "train_size": train_size }) setting_dense = copy.deepcopy(setting) setting_dense.update({ "network_name": "DenseNet", "line_title2": "$MLP_{best}$", "plot_colors": ["r"], "spread_factor": 1, "train_size": train_size }) setting_dense_spread = copy.deepcopy(setting) setting_dense_spread.update({ "network_name": "DenseSpreadNet", "line_title2": "$MLP_{RT}$", "plot_colors": ["b"], "train_size": train_size }) network_settings = { "SpreadNet": [setting_spread], "DenseNet": [setting_dense], "DenseSpreadNet": [setting_dense_spread] } plot.create_plot(network_settings, save_name, x_lim, y_lim) if show: plt.plot()
def plot_batch(batch_sizes, save_name, x_lim, y_lim, show=False, train_size=1000): setting_spread = copy.deepcopy(setting) setting_spread.update({ "network_name": "SpreadNet", "line_title2": "$Spread_{PH}$", "plot_colors": ["r", "g", "b"], "plot_marker": [" "], "train_size": train_size, }) setting_dense_spread = copy.deepcopy(setting) setting_dense_spread.update({ "network_name": "DenseSpreadNet", "line_title2": "$MLP_{RT}$", "plot_colors": ["r", "g", "b"], "plot_marker": ["-"], "train_size": train_size, }) settings_spread = [] settings_dense_spread = [] colors = ["r", "g", "b", "y", "g", "b"] for batch_size, color in zip(batch_sizes, colors): print(batch_size) s_spread = copy.deepcopy(setting_spread) s_dense_spread = copy.deepcopy(setting_dense_spread) s_spread.update({ "batch_size": batch_size, "plot_colors": [color], "plot_markers": [" "], "line_title2": s_spread['line_title2'] + " batch size " + str(batch_size) }) s_dense_spread.update({ "batch_size": batch_size, "plot_colors": [color], "plot_markers": ["h"], "line_title2": s_dense_spread['line_title2'] + " batch size " + str(batch_size) }) settings_spread.append(s_spread) settings_dense_spread.append(s_dense_spread) network_settings = { "SpreadNet": settings_spread, "DenseSpreadNet": settings_dense_spread } plot.create_plot(network_settings, save_name, x_lim, y_lim) if show: plt.show()
def plot_factors(spread_factors, save_name, x_lim, y_lim, show=False, train_size=1000, font_size=18): setting_spread = copy.deepcopy(setting) setting_spread.update({ "network_name": "SpreadNet", "line_title2": "$Spread_{PH}$", "plot_colors": ["r", "g", "b", "g"], "plot_marker": [" "], "train_size": train_size, }) setting_spread_norm = copy.deepcopy(setting) setting_spread_norm.update({ "network_name": "DenseNorm", "line_title2": "$Spread_{V2}$", "plot_colors": ["r", "g", "b", "g"], "plot_marker": [" "], "train_size": train_size, }) setting_dense_batch = copy.deepcopy(setting) setting_dense_batch.update({ "network_name": "DenseBatch", "line_title2": "$DenseBatch_{RT}$", "plot_colors": ["r", "g", "b", "g"], "plot_marker": ["-"], "train_size": train_size, }) setting_mlp_best = copy.deepcopy(setting) setting_mlp_best.update({ "network_name": "DenseNet", "line_title2": "$MLP_{BEST}$", "plot_colors": ["r", "g", "b", "g"], "plot_marker": ["<"], "train_size": train_size, }) setting_spreadv3 = copy.deepcopy(setting) setting_spreadv3.update({ "network_name": "SpreadV3", "line_title2": "$Spread_{V3}$", "plot_colors": ["r", "g", "b"], "plot_marker": [" "], "train_size": train_size }) settings_spread_norm = [] settings_spread = [] settings_dense_batch = [] settings_spread_v3 = [] colors = ["r", "g", "b", "y", "g", "b", "g", "r"] for spread_factor, color in zip(spread_factors, colors): print(spread_factor) s_spread_norm = copy.deepcopy(setting_spread_norm) s_spread_norm.update({ "spread_factor": spread_factor, "plot_colors": [color], "plot_markers": [" "], "line_title2": s_spread_norm['line_title2'] + " sf " + str(spread_factor) }) settings_spread_norm.append(s_spread_norm) s_spread_v3 = copy.deepcopy(setting_spreadv3) s_spread_v3.update({ "experiment": "", "spread_factor": spread_factor, "plot_colors": [color], "plot_markers": [">"], "line_title2": s_spread_v3['line_title2'] + " sf " + str(spread_factor) }) settings_spread_v3.append(s_spread_v3) s_spread = copy.deepcopy(setting_spread) s_spread.update({ "experiment": '3', "spread_factor": spread_factor, "plot_colors": [color], "plot_markers": [">"], "line_title2": s_spread['line_title2'] + " sf " + str(spread_factor) }) settings_spread.append(s_spread) s_dense_spread = copy.deepcopy(setting_dense_batch) s_dense_spread.update({ "spread_factor": spread_factor, "plot_colors": [color], "plot_markers": ["h"], "line_title2": s_dense_spread['line_title2'] + " sf " + str(spread_factor) }) settings_dense_batch.append(s_dense_spread) settings_mlp_best = [] s_mlp_best = copy.deepcopy(setting_mlp_best) s_mlp_best.update({ "experiment": '3', "spread_factor": 1, "plot_colors": ['silver'], "plot_markers": ["<"], "line_title2": s_mlp_best['line_title2'] }) settings_mlp_best.append(s_mlp_best) network_settings = { # "DenseNorm": settings_spread_norm, # "DenseBatch": settings_dense_batch, "SpreadV3": settings_spread_v3, # "SpreadNet": settings_spread, # "DenseNet": settings_mlp_best } plot.create_plot(network_settings, save_name, x_lim, y_lim, font_size=font_size, show_acc=False, show_loss=False) if show: plt.show()
def plot_train_size(train_size, save_name, x_lim, y_lim, show=False, font_size=18): setting_spread = copy.deepcopy(setting) setting_spread.update({ "network_name": "SpreadNet", "line_title2": "$Spread_{PH}$", "plot_colors": ["g"], "train_size": train_size }) setting_dense = copy.deepcopy(setting) setting_dense.update({ "network_name": "DenseNet", "line_title2": "$MLP_{best}$", "plot_colors": ["r"], "spread_factor": 1, "train_size": train_size }) setting_dense_spread = copy.deepcopy(setting) setting_dense_spread.update({ "network_name": "DenseSpreadNet", "line_title2": "$MLP_{RT}$", "plot_colors": ["b"], "train_size": train_size }) setting_spread_v3 = copy.deepcopy(setting) setting_spread_v3.update({ "network_name": "SpreadV3", "line_title2": "$Spread_{V3}$", "plot_colors": ["y"], "experiment": '', "train_size": train_size }) setting_dense_bn = copy.deepcopy(setting) setting_dense_bn.update({ "network_name": "DenseNorm", "line_title2": "$Dense_{BN}$", "plot_colors": ["brown"], "experiment": '', "train_size": train_size }) network_settings = { "SpreadNet": [setting_spread], "DenseNet": [setting_dense], "DenseSpreadNet": [setting_dense_spread], "SpreadV3": [setting_spread_v3], "DenseNorm": [setting_dense_bn], } plot.create_plot(network_settings, save_name, x_lim, y_lim, font_size=font_size) if show: plt.plot()