示例#1
0
        time_needed = iters_needed*args.timestep

        print "\nTime needed to reach equilibrium: {} seconds.".format(time_needed)

if not args.equilibrium:
    solution = dfe.evolve(rod, xnum, pref_inv, num_iters, cold=args.cold)

if args.output:
    print "Printing temperature solution to file "\
          "{}.dat".format(args.output),
    mio.print_matrix_to_file(solution, args.output+".dat")
    print "...done"

if args.printout:
    print "\nPrinting temperature solution to stdout..."
    mio.print_matrix(solution)
    print "...done"

if args.plot:
    for i in range(len(args.plot)):
        if args.plot[i] == "normal":
            plotting.plot_normal(xnum, solution, filename="rod_normal")
        if args.plot[i] == "contour":
            plotting.plot_contour(xnum, args.width, spacing, solution.transpose(), 
                                  title="phi", filename="rod_contour")
        if args.plot[i] == "surface":
            plotting.plot_surface(xnum, args.width, spacing, solution.transpose(), 
                                  title="phi", filename="rod_surface")
        # The title is just a way of making subtly different plots for the Laplace 
        # and heat diffusion sections with the same reusable plotting code.
示例#2
0
        # Apply a zero-dirichlet condition
        b_dofs = V.on_boundary()
        for i in b_dofs:
            A[i, :] = 0
            A[i, i] = 1
            b[i] = 0
        return A

    bc_apply(A, L)
    from numpy.linalg import solve
    u_h = solve(A, L)

    return u_h, V


if __name__ == "__main__":
    f = "4*(-y**2+y)*sin(pi*x)"
    # f = "8*pi**2*sin(2*pi*x)*sin(2*pi*y)"
    # f = "x**2+cos(2*pi*y)"

    def f_internal(x, y):
        from sympy import pi, sin, cos
        return eval(f)

    u_h, V = main(25, 10, f_internal, quad_degree=2)

    from plotting import plot_at_vertex, plot_custom, plot_contour
    plot_at_vertex(u_h, V)
    plot_custom(u_h, V, 40)
    plot_contour(u_h, V)
示例#3
0
xx, yy = mesh_wedge(domain)

# determine cell metrics for grid
from calc_cell_metrics import cellmetrics
mesh = cellmetrics(xx, yy, domain)

# initialize state vector, simulation parameters and fluid properties
class parameters:
    M_in = 1.8
    p_in = 101325
    T_in = 300
    iterations = 5000
    tolerance = 1e-6
    CFL = 0.4
class gas:
    gamma = 1.4
    Cp = 1006
    R = 287

from initialize import init_state
state = init_state(domain, mesh, parameters, gas)

# run AUSM scheme
from schemes import AUSM, AUSMplusup, AUSMDV
state = AUSMDV( domain, mesh, parameters, state, gas )

# call plotting functions
from plotting import plot_mesh, plot_contour
#plot_mesh(mesh)
plot_contour(domain, mesh, state)
示例#4
0
solution = lps.solve_laplace(args.xnum,
                             args.ynum,
                             args.method,
                             err_tol=args.error,
                             input_matrix=matrix,
                             boundary_cond=args.boundary)
end = time.clock()
print "Time taken to converge: ", end - start, " processor seconds."
print "\n... done"

if args.plot:
    for i in range(len(args.plot)):
        if args.plot[i] == "surface":
            plotting.plot_surface(args.xnum, args.ynum, spacing, solution)
        if args.plot[i] == "contour":
            plotting.plot_contour(args.xnum, args.ynum, spacing, solution)
        if args.plot[i] == "vector":
            plotting.plot_vector(args.xnum, args.ynum, spacing, solution)
        if args.plot[i] == "magnitude":
            plotting.plot_magnitude(args.xnum, args.ynum, spacing, solution)

if args.output:
    print "\nPrinting potential field solution to file "\
          "'{}_potential.dat'... ".format(args.output),
    mio.print_matrix_to_file(solution, args.output + "_potential.dat")
    print "done"

    print "Printing magnitude of electric field solution to file "\
          "'{}_field_strength.dat'...".format(args.output),
    grad = np.gradient(solution)
    mag = np.sqrt(grad[0] * grad[0] + grad[1] * grad[1])
from plotting import plot_contour
import matplotlib.pyplot as plt
import numpy as np

format = 'png'

P = np.array([[4, 1], [1, 2]])
x = np.array([[1], [1]])

f = lambda x: np.sum(np.array(x) @ P @ np.array(x))

dfx = 0.5 * P @ x

# make contours
fig, ax = plt.subplots()
plot_contour(f, [0, 2], [0, 2], ax, False)

ax.arrow(x[0, 0], x[1, 0], dfx[0, 0] * 0.2, dfx[1, 0] * 0.2, color=red)
ax.text(x[0, 0] + dfx[0, 0] * 0.2 + 0.05,
        x[1, 0] + dfx[1, 0] * 0.2 + 0.05,
        r'$\nabla f(\mathbf{x}^{(k)})$',
        color=red)

ax.text(x[0, 0] + 0.1, x[1, 0] + 0.1, r'$\mathbf{x}^{(k)}$', color=black)


def compute_x2_line(x1):  # function to compute the line in x, orth to dfx
    intercept = np.sum(dfx * x)
    return (intercept - x1 * dfx[0, 0]) / dfx[1, 0]