T = 15 plt.ion() plt.figure(1) # for i in range(N): # ax = plt.subplot2grid((N,2),(i,0)) # plt.imshow(np.random.randn(D,T),interpolation='none',aspect=T/D,cmap='Greys_r') # pltuls.strip_ticks(ax) # # plt.text(0.3,0.95,'True W',transform=plt.gcf().transFigure) # ims = [] for i in range(N): ax = plt.subplot2grid((N, 2), (i, 1)) im = ax.imshow(np.random.randn(D, T), interpolation='none', aspect=T / D, cmap='Greys_r') ims.append(im) pltuls.strip_ticks(ax) # plt.show() for j in range(100): for i in range(N): im = ims[i] test_im = np.random.randn(D, T) im.set_array(test_im) plt.draw() plt.pause(0.1)
SS_tot = np.sum(np.square(M_nsy-np.mean(M_nsy))) oneminusrsq = SS_res/SS_tot print("1 - R^2: "+str(oneminusrsq)) #Reassign 1 - R^2 oneminusrsq = 5. plt.ion() #Plot the true W plt.figure(1) colormap = matplotlib.cm.get_cmap('Reds') for i in range(N): ax = plt.subplot2grid((N,3),(i,0)) plt.imshow(util.normalize(W[:,i].T[:,None]),interpolation='none', aspect=3./D,cmap=colormap,vmin=0,vmax=1) pltuls.strip_bare(ax,axis='x') pltuls.strip_ticks(ax,axis='y') plt.text(0.25,0.95,'True W',transform=plt.gcf().transFigure) #Initialize synergy estimators synergy_estimator = synergy_estimators.SynchronousSynergyEstimator( D,T,N,M_nsy) #Plot the W_ests ims = [] plt.figure(1) for i in range(N): ax = plt.subplot2grid((N,3),(i,2)) im = plt.imshow(synergy_estimator.W_est[:,i].T[ :,None],interpolation='none',aspect=3./D, cmap=colormap,vmin=0,vmax=1) pltuls.strip_bare(ax,axis='x')