def plot_cluster_error(ax): res_ftemp = "spatial_analysis/{}_{}_ifs.pkz" for exp in ["dots", "sticks"]: subjects = get_subject_order(exp) color = get_colormap(exp, as_cmap=False)[20] errs = [] for subj in subjects: res = moss.load_pkl(res_ftemp.format(subj, exp)) x = res.steps norm = res.null.mean() errs.append(res.real / norm) errs = np.vstack(errs) mean = errs.mean(axis=0) ax.plot(x, mean, color=color, lw=2) sem = stats.sem(errs, axis=0) ax.fill_between(x, mean - sem, mean + sem, alpha=.2, color=color) ax.axhline(y=1, lw=1, dashes=[5, 2], color=".5", zorder=0, xmin=.02, xmax=.98) ax.set(xlim=(0, 42), ylim=(.55, 1.45), yticks=[.6, .8, 1, 1.2, 1.4], xticks=[0, 10, 20, 30, 40], xlabel="Neighborhood radius (mm)", ylabel="Normalized error") sns.despine(ax=ax, trim=True)
mec=".2", ms=3) ax.set(xticks=x, xlim=(.6, 4.4), ylim=(0, .07)) sns.despine(ax=ax, trim=True) plt.setp(axes[1:], yticklabels=[]) axes[0].set_ylabel("Correlation (r)") if __name__ == "__main__": set_style() f, axes = setup_figure() subjects = get_subject_order("sticks") plot_time_corrs(subjects, axes) axes[0].text(2.5, .041, "Same context", color=".2", size=7, ha="center") axes[0].text(2.9, .014, "Different\ncontext", color=".5", size=7, ha="center") f.text(.55, .03, "Resting scan number", size=10, ha="center") f.tight_layout() f.subplots_adjust(bottom=.2)
ylabel = "Subnetwork strength\n($r_{\mathrm{same}} - r_{\mathrm{diff}}$)" plt.setp(axes[1:7], yticklabels=[]) axes[0].set_ylabel(ylabel) if exp == "dots": plt.setp(axes[8:], yticklabels=[]) plt.setp(axes[:7], xticklabels=[]) axes[7].set_ylabel(ylabel) if __name__ == "__main__": set_style() f, dots_axes, sticks_axes, rest_axes = setup_figure() dots_subjects = get_subject_order("dots") sticks_subjects = get_subject_order("sticks") plot_distance_corrs(dots_subjects, dots_axes, "dots") plot_distance_corrs(sticks_subjects, sticks_axes, "sticks") plot_distance_corrs(sticks_subjects, rest_axes, "rest") f.text(.525, .01, "Distance threshold (mm)", size=10, ha="center") f.text(.525, .95, "Experiment 1 (residuals)", size=11, ha="center") f.text(.525, .50, "Experiment 2 (residuals)", size=11, ha="center") f.text(.525, .25, "Experiment 2 (resting)", size=11, ha="center") dots_axes[0].text(10, .038, "2D Distance", color=".2", size=7) dots_axes[0].text(10, .005, "3D Distance", color=".5", size=7) savefig(f, __file__)
return f, brain_axes, hist_axes, cbar_ax def plot_colorbar(f, ax): cmap = get_colormap("dots") xx = np.arange(200).reshape(1, 200) ax.imshow(xx, rasterized=True, aspect="auto", cmap=cmap) kws = dict(size=7, ha="center") f.text(.35, .04, "Motion", **kws) f.text(.65, .04, "Color", **kws) ax.set(xticks=[], yticks=[]) if __name__ == "__main__": set_style() f, brain_axes, hist_axes, cbar_ax = setup_figure() subjects = get_subject_order("dots") plot_brains(subjects, brain_axes) plot_hists(subjects, hist_axes, 2, 380) plot_colorbar(f, cbar_ax) savefig(f, __file__)