示例#1
0
def subscriber(**kwargs):
    geckopy.init_node(**kwargs)

    MAP_SIZE_PIXELS = 500
    MAP_SIZE_METERS = 10
    slam = RMHC_SLAM(LDS01_Model(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, 'SLAM')
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # callback function
    def f(topic, msg):
        # print("recv[{}]: {}".format(topic, msg))
        geckopy.loginfo(msg.timestamp)
        pts = msg.scan
        slam.update(pts)

        # Get current robot position
        x, y, theta = slam.getpos()

        # Get current map bytes as grayscale
        slam.getmap(mapbytes)

        display.displayMap(mapbytes)
        display.setPose(x, y, theta)
        display.refresh()

    geckopy.Subscriber(['scan'], f)

    geckopy.spin(20)  # it defaults to 100hz, this is just to slow it down
    print('sub bye ...')
    def __init__(self):
        # Connect to Lidar unit
        self.lidar = Lidar(LIDAR_DEVICE)

        # Create an RMHC SLAM object with a laser model and optional robot model
        self.slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

        # Initialize empty map
        self.mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

        # Set up a SLAM display
        self.display = SlamShow(MAP_SIZE_PIXELS, MAP_SIZE_METERS*1000/MAP_SIZE_PIXELS, 'SLAM')
示例#3
0
def main():

    # Bozo filter for input args
    if len(argv) < 4:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Allocate byte array to receive map updates
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Load the data from the file
    timestamps, lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display, named by dataset
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, dataset)

    # Pose will be modified in our threaded code
    pose = [0, 0, 0]

    # Launch the data-collection / update thread
    thread = Thread(target=threadfunc,
                    args=(robot, slam, timestamps, lidars,
                          odometries if use_odometry else None, mapbytes,
                          pose))
    thread.daemon = True
    thread.start()

    # Loop forever,displaying current map and pose
    while True:

        # Display map and robot pose
        display.displayMap(mapbytes)
        display.setPose(*pose)

        # Refresh the display, exiting gracefully if user closes it
        if not display.refresh():
            exit(0)
示例#4
0
from breezyslam.sensors import URG04LX as LaserModel

from breezylidar import URG04LX as Lidar

from pltslamshow import SlamShow

if __name__ == '__main__':

    # Connect to Lidar unit
    lidar = Lidar(LIDAR_DEVICE)

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, 'SLAM')

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    while True:

        # Update SLAM with current Lidar scan
        slam.update(lidar.getScan())

        # Get current robot position
        x, y, theta = slam.getpos()

        # Get current map bytes as grayscale
        slam.getmap(mapbytes)
示例#5
0
img_dict[1] = cv2.flip(cv2.imread('icons8-staircase-50.jpg'), 0)
img_dict[2] = cv2.flip(cv2.imread('icons8-fire-extinguisher-50.jpg'), 0)
img_dict[3] = cv2.flip(cv2.imread('icons8-exit-sign-50.jpg'), 0)
img_dict[4] = cv2.flip(cv2.imread('icons8-circuit-50.jpg'), 0)
img_dict[5] = cv2.flip(cv2.imread('icons8-elevator-50.jpg'), 0)
img_dict[6] = cv2.flip(cv2.imread('icons8-test-tube-50.jpg'), 0)
img_dict[7] = cv2.flip(cv2.imread('icons8-biohazard-26.jpg'), 0)
img_dict[8] = cv2.flip(cv2.imread('icons8-radio-active-50.jpg'), 0)
img_dict[9] = cv2.flip(cv2.imread('icons8-door-opened-50.jpg'), 0)
temp = np.load('scan.npy')
print(temp)

# Connect to Lidar and initialize variables
lidar = Lidar(args.device)
slam = RMHC_SLAM(LaserModel(), args.pixelmapsize, args.metermapsize)
display = SlamShow(args.pixelmapsize,
                   args.metermapsize * 1000 / args.pixelmapsize, 'SLAM')
trajectory = []
mapbytes = bytearray(args.pixelmapsize * args.pixelmapsize)
iterator = lidar.iter_scans()
previous_distances = None
previous_angles = None
next(iterator)
prev_items = None
labels_dict = {}
np.save("label.npy", np.array([]))

### Primary SLAM Loop
while True:

    # Get angles and distance from scan
    try:
async def main():

    #---------------------------------------
    # Setup Lidar unit and SLAM
    #---------------------------------------
    # Connect to Lidar unit
    lidar = nanoLidar.nanoLidar(host)
    # get firmware info
    print("Lidar Version:")
    print(lidar.getInfo())

    # Create an RMHC SLAM object with a laser model and optional robot model
    slam = RMHC_SLAM(LaserModel(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, 'SLAM')

    # Initialize an empty trajectory
    trajectory = []

    # Initialize empty map
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    #---------------------------------------
    # Setup Robot unit
    #---------------------------------------
    # Connect to robot unit
    robot = robotPosition.robotPosition(host)
    robot.powerOn()
    # get firmware info
    print("Chassis Version:")
    print(robot.getInfo())

    #---------------------------------------
    # main loop
    #---------------------------------------
    run = True
    while run:

        # Update SLAM with current Lidar scan, using first element of (scan, quality) pairs
        slam.update([pair[0] for pair in lidar.getScan()])

        # Get current robot position
        x, y, theta = slam.getpos()

        # Get current map bytes as grayscale
        slam.getmap(mapbytes)

        display.displayMap(mapbytes)

        display.setPose(x, y, theta)

        # Exit on ESCape
        key = display.refresh()
        if key != None and (key & 0x1A):
            run = False

        # Movement control
        distance = int(input("Distance [mm]: "))
        angle = int(input("Turn angle [degrees]: "))
        (xp, yp, theta_deg, theta_rad) = robot.setPosition(distance, angle)
        if int(input("Carry on (1/0): ")) == 0:
            run = False

    # power off stepper motors
    robot.powerOff()
示例#7
0
文件: main.py 项目: ljthink/LiDAR
        self.scan_rate_hz = 1.57
        self.detection_angle_degrees = 360
        self.distance_no_detection_mm = 10000 #10m
        self.detection_margin = 0
        self.offset_mm = offset_mm

WINDOW_SIZE = 1200
MAP_SIZE_METERS = 10

lidar = DIYLidar(log = False)
lidar_properties = DIYLidar_Properties(lidar.getPointsPerLap())

mapbytes = bytearray(WINDOW_SIZE * WINDOW_SIZE)
slam = RMHC_SLAM(lidar_properties, WINDOW_SIZE, 35) 

window = SlamShow(WINDOW_SIZE, MAP_SIZE_METERS*1000/WINDOW_SIZE, "scan")
pose = [0,0,0]

while True:
	scan = lidar.waitForNextScan()
	if scan != False:
		slam.update(scan.getPointsDistances_mm())
		x, y, theta = slam.getpos()
		pose = [x /10.0, y / 10.0, theta]
		slam.getmap(mapbytes)


		window.displayMap(mapbytes)
		window.setPose(*pose)

		if not window.refresh():