def test_evaluation(self): log = xes_importer.apply(os.path.join("input_data", "running-example.xes")) from pm4py.algo.discovery.alpha import algorithm as alpha_miner net, im, fm = alpha_miner.apply(log) from pm4py.algo.evaluation.simplicity import algorithm as simplicity simp = simplicity.apply(net) from pm4py.algo.evaluation import algorithm as evaluation_method eval = evaluation_method.apply(log, net, im, fm)
def test_evaluation_pm2(self): # to avoid static method warnings in tests, # that by construction of the unittest package have to be expressed in such way self.dummy_variable = "dummy_value" log = xes_importer.apply( os.path.join(INPUT_DATA_DIR, "running-example.xes")) net, marking, final_marking = inductive_miner.apply(log) metrics = evaluation_alg.apply(log, net, marking, final_marking) del metrics
def test_inductiveminer_log(self): log = xes_importer.apply( os.path.join("input_data", "running-example.xes")) net, im, fm = inductive_miner.apply(log) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net)
def test_alphaminer_df(self): log = pd.read_csv(os.path.join("input_data", "running-example.csv")) log = dataframe_utils.convert_timestamp_columns_in_df(log) net, im, fm = alpha_miner.apply(log) aligned_traces_tr = tr_alg.apply(log, net, im, fm) aligned_traces_alignments = align_alg.apply(log, net, im, fm) evaluation = eval_alg.apply(log, net, im, fm) fitness = rp_fit.apply(log, net, im, fm) precision = precision_evaluator.apply(log, net, im, fm) gen = generalization.apply(log, net, im, fm) sim = simplicity.apply(net)
def test_inductiveminer_stream(self): df = pd.read_csv(os.path.join("input_data", "running-example.csv")) df = dataframe_utils.convert_timestamp_columns_in_df(df) stream = log_conversion.apply(df, variant=log_conversion.TO_EVENT_STREAM) net, im, fm = inductive_miner.apply(stream) aligned_traces_tr = tr_alg.apply(stream, net, im, fm) aligned_traces_alignments = align_alg.apply(stream, net, im, fm) evaluation = eval_alg.apply(stream, net, im, fm) fitness = rp_fit.apply(stream, net, im, fm) precision = precision_evaluator.apply(stream, net, im, fm) gen = generalization.apply(stream, net, im, fm) sim = simplicity.apply(net)
def execute_script(): log = xes_importer.apply( os.path.join("..", "tests", "input_data", "reviewing.xes")) net, marking, final_marking = inductive_miner.apply(log) metrics = general_evaluation.apply(log, net, marking, final_marking) print("metrics=", metrics)